These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30888809)

  • 1. Soft chemical routes to electrochemically active iron phosphates.
    Sandineni P; Yaghoobnejad Asl H; Gerasimchuk N; Ghosh K; Choudhury A
    Inorg Chem; 2019 Apr; 58(7):4117-4133. PubMed ID: 30888809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal Structure and Lithium Diffusion Pathways of a Potential Positive Electrode Material for Lithium-Ion Batteries: Li
    Boivin E; Masquelier C; Croguennec L; Chotard JN
    Inorg Chem; 2017 Jun; 56(12):6776-6779. PubMed ID: 28557425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Mechanism and Effect of Carbon Nanotubes on the Electrochemical Performance of Fe
    Mahmoud A; Karegeya C; Sougrati MT; Bodart J; Vertruyen B; Cloots R; Lippens PE; Boschini F
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34202-34211. PubMed ID: 30216721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphite as Polyanion-Based Cathode for Li-Ion Battery: Synthesis, Structure, and Electrochemistry of LiFe(HPO3)2.
    Yaghoobnejad Asl H; Choudhury A
    Inorg Chem; 2015 Jul; 54(13):6566-72. PubMed ID: 26090724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural study of the Li(0.5)Na(0.5)MnFe2(PO4)3 and Li(0.75)Na(0.25)MnFe2(PO4)3 alluaudite phases and their electrochemical properties as positive electrodes in lithium batteries.
    Trad K; Carlier D; Croguennec L; Wattiaux A; Ben Amara M; Delmas C
    Inorg Chem; 2010 Nov; 49(22):10378-89. PubMed ID: 20949928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. α-Na2Ni2Fe(PO4)3: a dual positive/negative electrode material for sodium ion batteries.
    Essehli R; Belharouak I; Ben Yahia H; Chamoun R; Orayech B; El Bali B; Bouziane K; Zhou XL; Zhou Z
    Dalton Trans; 2015 Mar; 44(10):4526-32. PubMed ID: 25652612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enabling the Electrochemical Activity in Sodium Iron Metaphosphate [NaFe(PO
    Gond R; Meena SS; Yusuf SM; Shukla V; Jena NK; Ahuja R; Okada S; Barpanda P
    Inorg Chem; 2017 May; 56(10):5918-5929. PubMed ID: 28462996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alluaudite Na2Co2Fe(PO4)3 as an electroactive material for sodium ion batteries.
    Essehli R; Belharouak I; Ben Yahia H; Maher K; Abouimrane A; Orayech B; Calder S; Zhou XL; Zhou Z; Sun YK
    Dalton Trans; 2015 May; 44(17):7881-6. PubMed ID: 25824572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of electrochemically active Fe
    Dräger C; Sigel F; Witte R; Kruk R; Pfaffmann L; Mangold S; Mereacre V; Knapp M; Ehrenberg H; Indris S
    Phys Chem Chem Phys; 2018 Dec; 21(1):89-95. PubMed ID: 30519683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the Crystal Structure and the Electrochemical Properties of Na
    Nguyen LHB; Olchowka J; Belin S; Sanz Camacho P; Duttine M; Iadecola A; Fauth F; Carlier D; Masquelier C; Croguennec L
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38808-38818. PubMed ID: 31560192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen-participated electrochemistry of new lithium-rich layered oxides Li3MRuO5 (M = Mn, Fe).
    Laha S; Natarajan S; Gopalakrishnan J; Morán E; Sáez-Puche R; Alario-Franco MÁ; Dos Santos-Garcia AJ; Pérez-Flores JC; Kuhn A; García-Alvarado F
    Phys Chem Chem Phys; 2015 Feb; 17(5):3749-60. PubMed ID: 25557948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium chromium pyrophosphate as an insertion material for Li-ion batteries.
    Reichardt M; Sallard S; Novák P; Villevieille C
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2015 Dec; 71(Pt 6):661-7. PubMed ID: 26634722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly fluorinated lithium iron phosphate with interpenetrating lattices: electrochemistry and ionic conductivity.
    Yaghoobnejad Asl H; Ghosh K; Choudhury A
    Dalton Trans; 2017 Sep; 46(37):12588-12596. PubMed ID: 28906516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox centers evolution in phospho-olivine type (LiFe0.5Mn0.5 PO4) nanoplatelets with uniform cation distribution.
    Paolella A; Bertoni G; Dilena E; Marras S; Ansaldo A; Manna L; George C
    Nano Lett; 2014 Mar; 14(3):1477-83. PubMed ID: 24564785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zero Lithium Miscibility Gap Enables High-Rate Equimolar Li(Mn
    Yang J; Li C; Guang T; Zhang H; Li Z; Fan B; Ma Y; Zhu K; Wang X
    Nano Lett; 2021 Jun; 21(12):5091-5097. PubMed ID: 34061545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and crystal structures of iron hydrogen phosphates.
    Redrup KV; Weller MT
    Dalton Trans; 2009 May; (19):3786-92. PubMed ID: 19417944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes.
    Park AR; Park CM
    ACS Nano; 2017 Jun; 11(6):6074-6084. PubMed ID: 28485960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of (Li
    Gorbunov MV; Carrocci S; Maletti S; Valldor M; Doert T; Hampel S; Gonzalez Martinez IG; Mikhailova D; Gräßler N
    Inorg Chem; 2020 Nov; 59(21):15626-15635. PubMed ID: 33047957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the interface between Na-rich and Li-rich phases in a Na-inserted spinel Li4Ti5O12 crystal for an electrode of a sodium-ion battery.
    Kitta M; Kataoka R; Kohyama M
    Phys Chem Chem Phys; 2016 Jul; 18(29):19888-93. PubMed ID: 27391208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.