BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 30889101)

  • 1. Development of the Environmental Radiation Survey Program and Its Application to In Situ Gamma-Ray Spectrometry.
    Ji YY; Jang M; Lee W
    Health Phys; 2019 Jun; 116(6):840-851. PubMed ID: 30889101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Approach for the Determination of Dose Rate and Radioactivity for Detected Gamma Nuclides Using an Environmental Radiation Monitor Based on an NaI(Tl) Detector.
    Ji YY; Kim CJ; Lim KS; Lee W; Chang HS; Chung KH
    Health Phys; 2017 Oct; 113(4):304-314. PubMed ID: 28796752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast in situ gamma spectroscopy using hand-held spectrometer with NaI probe.
    Guguła S; Kozak K; Mazur J; Grządziel D; Mroczek M
    J Environ Radioact; 2018 Aug; 188():87-94. PubMed ID: 29021085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accounting for the depth distribution of 137Cs in on-line mobile gamma spectrometry through primary and forward-scattered photons.
    Hjerpe T; Samuelsson C
    Radiat Environ Biophys; 2002 Sep; 41(3):225-30. PubMed ID: 12373332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a Monte Carlo method to the uncertainty assessment in in situ gamma-ray spectrometry.
    Persson L; Boson J; Nylén T; Ramebäck H
    J Environ Radioact; 2018 Jul; 187():1-7. PubMed ID: 29459254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Monte Carlo-based calibrations of HPGe detectors for in situ gamma-ray spectrometry.
    Boson J; Plamboeck AH; Ramebäck H; Agren G; Johansson L
    J Environ Radioact; 2009 Nov; 100(11):935-40. PubMed ID: 19604609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. InSiCal - A tool for calculating calibration factors and activity concentrations in in situ gamma spectrometry.
    Mauring A; Vidmar T; Gäfvert T; Drefvelin J; Fazio A
    J Environ Radioact; 2018 Aug; 188():58-66. PubMed ID: 29074271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of precise measurements of natural radionuclides and radiation dose using in-situ and laboratory γ-ray spectroscopy techniques.
    Hassan NM; Kim YJ; Jang J; Chang BU; Chae JS
    Sci Rep; 2018 Sep; 8(1):14115. PubMed ID: 30237485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radioactivity measurements in the aquatic environment using in-situ and laboratory gamma-ray spectrometry.
    Eleftheriou G; Tsabaris C; Androulakaki EG; Patiris DL; Kokkoris M; Kalfas CA; Vlastou R
    Appl Radiat Isot; 2013 Dec; 82():268-78. PubMed ID: 24103707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GEANT4 calibration of gamma spectrometry efficiency for measurements of airborne radioactivity on filter paper.
    Alrefae T
    Health Phys; 2014 Nov; 107(5):435-41. PubMed ID: 25271933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing of an automatic outdoor gamma ambient dose-rate surveillance system in Tokyo and its calibration using measured deposition after the Fukushima nuclear accident.
    Zhang W; Korpach E; Berg R; Ungar K
    J Environ Radioact; 2013 Nov; 125():93-8. PubMed ID: 23317566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of different methods for the assessment of the environmental gamma dose.
    Losana MC; Magnoni M; Righino F
    Radiat Prot Dosimetry; 2001; 97(4):333-6. PubMed ID: 11878414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of in-situ gamma spectrometry methods by Monte-Carlo simulations.
    Mrdja D; Bikit K; Forkapic S; Bikit I; Slivka J; Hansman J
    J Environ Radioact; 2018 Aug; 188():23-29. PubMed ID: 29132981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ hot spot measurements with HPGe detector 0.1 M above ground.
    Nir-El Y
    Health Phys; 2000 Oct; 79(4):396-401. PubMed ID: 11007461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-situ measurements of 137Cs in soil by unfolding method.
    Fülöp M; Ragan P
    Health Phys; 1997 Jun; 72(6):923-30. PubMed ID: 9169934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of calibration parameters for an aerial gamma spectrometry system using Monte-Carlo technique.
    Srinivasan P; Raman A; Sharma DN
    Environ Monit Assess; 2002 Apr; 75(1):73-85. PubMed ID: 15900666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of field spectrometry in estimating 137Cs contamination in high altitude alpine soils.
    Agnesod G; Lazzaron R; Operti C; Zappa C
    Radiat Prot Dosimetry; 2001; 97(4):329-32. PubMed ID: 11878413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and calibration of a real-time airborne radioactivity monitor using direct gamma-ray spectrometry with two scintillation detectors.
    Casanovas R; Morant JJ; Salvadó M
    Appl Radiat Isot; 2014 Jul; 89():102-8. PubMed ID: 24607535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ESTABLISHMENT OF A LOW DOSE RATE GAMMA RAY CALIBRATION FIELD FOR ENVIRONMENTAL RADIATION MONITORING DEVICES.
    Kowatari M; Yoshitomi H; Nishino S; Tanimura Y; Ohishi T; Kessler P; Neumaier S; Röttger A
    Radiat Prot Dosimetry; 2019 Dec; 187(1):61-68. PubMed ID: 31135906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ gamma-ray spectrometry for environmental monitoring: a semi empirical calibration method.
    Boson J; Lidström K; Nylén T; Agren G; Johansson L
    Radiat Prot Dosimetry; 2006; 121(3):310-6. PubMed ID: 16632586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.