These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3122 related articles for article (PubMed ID: 30889282)
1. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT. Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282 [TBL] [Abstract][Full Text] [Related]
2. Deep-learning model observer for a low-contrast hepatic metastases localization task in computed tomography. Gong H; Fletcher JG; Heiken JP; Wells ML; Leng S; McCollough CH; Yu L Med Phys; 2022 Jan; 49(1):70-83. PubMed ID: 34792800 [TBL] [Abstract][Full Text] [Related]
3. CNN as model observer in a liver lesion detection task for x-ray computed tomography: A phantom study. Kopp FK; Catalano M; Pfeiffer D; Fingerle AA; Rummeny EJ; Noël PB Med Phys; 2018 Oct; 45(10):4439-4447. PubMed ID: 30137658 [TBL] [Abstract][Full Text] [Related]
4. Correlation between a 2D channelized Hotelling observer and human observers in a low-contrast detection task with multislice reading in CT. Yu L; Chen B; Kofler JM; Favazza CP; Leng S; Kupinski MA; McCollough CH Med Phys; 2017 Aug; 44(8):3990-3999. PubMed ID: 28555878 [TBL] [Abstract][Full Text] [Related]
5. Image quality evaluation in deep-learning-based CT noise reduction using virtual imaging trial methods: Contrast-dependent spatial resolution. Zhou Z; Gong H; Hsieh S; McCollough CH; Yu L Med Phys; 2024 Aug; 51(8):5399-5413. PubMed ID: 38555876 [TBL] [Abstract][Full Text] [Related]
6. Localization of liver lesions in abdominal CT imaging: II. Mathematical model observer performance correlates with human observer performance for localization of liver lesions in abdominal CT imaging. Dilger SKN; Leng S; Chen B; Carter RE; Favazza CP; Fletcher JG; McCollough CH; Yu L Phys Med Biol; 2019 May; 64(10):105012. PubMed ID: 30995626 [TBL] [Abstract][Full Text] [Related]
7. Prediction of human observer performance in a 2-alternative forced choice low-contrast detection task using channelized Hotelling observer: impact of radiation dose and reconstruction algorithms. Yu L; Leng S; Chen L; Kofler JM; Carter RE; McCollough CH Med Phys; 2013 Apr; 40(4):041908. PubMed ID: 23556902 [TBL] [Abstract][Full Text] [Related]
8. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
9. A deep learning anthropomorphic model observer for a detection task in PET. Shao M; Byrd DW; Mitra J; Behnia F; Lee JH; Iravani A; Sadic M; Chen DL; Wollenweber SD; Abbey CK; Kinahan PE; Ahn S Med Phys; 2024 Oct; 51(10):7093-7107. PubMed ID: 39008812 [TBL] [Abstract][Full Text] [Related]
10. Localization of liver lesions in abdominal CT imaging: I. Correlation of human observer performance between anatomical and uniform backgrounds. Dilger SKN; Yu L; Chen B; Favazza CP; Carter RE; Fletcher JG; McCollough CH; Leng S Phys Med Biol; 2019 May; 64(10):105011. PubMed ID: 30995611 [TBL] [Abstract][Full Text] [Related]
11. Effect of Radiation Dose Reduction and Reconstruction Algorithm on Image Noise, Contrast, Resolution, and Detectability of Subtle Hypoattenuating Liver Lesions at Multidetector CT: Filtered Back Projection versus a Commercial Model-based Iterative Reconstruction Algorithm. Solomon J; Marin D; Roy Choudhury K; Patel B; Samei E Radiology; 2017 Sep; 284(3):777-787. PubMed ID: 28170300 [TBL] [Abstract][Full Text] [Related]
12. Deep learning-based low-dose CT simulator for non-linear reconstruction methods. Tunissen SAM; Moriakov N; Mikerov M; Smit EJ; Sechopoulos I; Teuwen J Med Phys; 2024 Sep; 51(9):6046-6060. PubMed ID: 38843540 [TBL] [Abstract][Full Text] [Related]
13. Dose reduction and image enhancement in micro-CT using deep learning. Muller FM; Maebe J; Vanhove C; Vandenberghe S Med Phys; 2023 Sep; 50(9):5643-5656. PubMed ID: 36994779 [TBL] [Abstract][Full Text] [Related]
14. A convolutional neural network-based model observer for breast CT images. Kim G; Han M; Shim H; Baek J Med Phys; 2020 Apr; 47(4):1619-1632. PubMed ID: 32017147 [TBL] [Abstract][Full Text] [Related]
15. Deep-learning-based model observer for a lung nodule detection task in computed tomography. Gong H; Hu Q; Walther A; Koo CW; Takahashi EA; Levin DL; Johnson TF; Hora MJ; Leng S; Fletcher JG; McCollough CH; Yu L J Med Imaging (Bellingham); 2020 Jul; 7(4):042807. PubMed ID: 32647740 [No Abstract] [Full Text] [Related]
16. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images. Kim B; Han M; Shim H; Baek J Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488 [TBL] [Abstract][Full Text] [Related]
17. A comparative study based on image quality and clinical task performance for CT reconstruction algorithms in radiotherapy. Li H; Dolly S; Chen HC; Anastasio MA; Low DA; Li HH; Michalski JM; Thorstad WL; Gay H; Mutic S J Appl Clin Med Phys; 2016 Jul; 17(4):377-390. PubMed ID: 27455472 [TBL] [Abstract][Full Text] [Related]
18. MR-based synthetic CT generation using a deep convolutional neural network method. Han X Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624 [TBL] [Abstract][Full Text] [Related]
19. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Ibragimov B; Xing L Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307 [TBL] [Abstract][Full Text] [Related]
20. Low dose of contrast agent and low radiation liver computed tomography with deep-learning-based contrast boosting model in participants at high-risk for hepatocellular carcinoma: prospective, randomized, double-blind study. Kang HJ; Lee JM; Ahn C; Bae JS; Han S; Kim SW; Yoon JH; Han JK Eur Radiol; 2023 May; 33(5):3660-3670. PubMed ID: 36934202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]