These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30889364)

  • 41. Post-tetanic potentiation increases energy cost to a higher extent than work in rat fast skeletal muscle.
    Abbate F; Van Der Velden J; Stienen GJ; De Haan A
    J Muscle Res Cell Motil; 2001; 22(8):703-10. PubMed ID: 12222831
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Soleus muscle force following downhill running in ovariectomized rats treated with estrogen.
    Sotiriadou S; Kyparos A; Albani M; Arsos G; Clarke MS; Sidiras G; Angelopoulou N; Matziari C
    Appl Physiol Nutr Metab; 2006 Aug; 31(4):449-59. PubMed ID: 16900235
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of temperature on myosin phosphorylation in mouse skeletal muscle.
    Moore RL; Palmer BM; Williams SL; Tanabe H; Grange RW; Houston ME
    Am J Physiol; 1990 Sep; 259(3 Pt 1):C432-8. PubMed ID: 2399966
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Myosin phosphorylation enhances rate of force development in fast-twitch skeletal muscle.
    Vandenboom R; Grange RW; Houston ME
    Am J Physiol; 1995 Mar; 268(3 Pt 1):C596-603. PubMed ID: 7900767
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of work cycle frequency on the potentiation of dynamic force in mouse fast twitch skeletal muscle.
    Caterini D; Gittings W; Huang J; Vandenboom R
    J Exp Biol; 2011 Dec; 214(Pt 23):3915-23. PubMed ID: 22071182
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Threshold for force potentiation associated with skeletal myosin phosphorylation.
    Vandenboom R; Grange RW; Houston ME
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1456-62. PubMed ID: 8279509
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Global phosphoproteomic profiling of skeletal muscle in ovarian hormone-deficient mice.
    Peyton MP; Yang TY; Higgins L; Markowski TW; Vue C; Parker LL; Lowe DA
    Physiol Genomics; 2022 Nov; 54(11):417-432. PubMed ID: 36062884
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Contractility and myosin isoform compositions of skeletal muscles and muscle cells from rats treated with thyroid hormone for 0, 4 and 8 weeks.
    Li X; Larsson L
    J Muscle Res Cell Motil; 1997 Jun; 18(3):335-44. PubMed ID: 9172075
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Physiological vs. pharmacological signalling to myosin phosphorylation in airway smooth muscle.
    Gao N; Tsai MH; Chang AN; He W; Chen CP; Zhu M; Kamm KE; Stull JT
    J Physiol; 2017 Oct; 595(19):6231-6247. PubMed ID: 28749013
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dietary genistein enhances phosphorylation of regulatory myosin light chain in the myocardium of ovariectomized mice.
    Schwab K; Stein R; Scheler C; Theuring F
    Electrophoresis; 2012 Jul; 33(12):1795-803. PubMed ID: 22740468
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Skeletal muscle contractions stimulate cGMP formation and attenuate vascular smooth muscle myosin phosphorylation via nitric oxide.
    Lau KS; Grange RW; Chang WJ; Kamm KE; Sarelius I; Stull JT
    FEBS Lett; 1998 Jul; 431(1):71-4. PubMed ID: 9684868
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Slow-to-fast transformation of denervated soleus muscles by chronic high-frequency stimulation in the rat.
    Gorza L; Gundersen K; Lømo T; Schiaffino S; Westgaard RH
    J Physiol; 1988 Aug; 402():627-49. PubMed ID: 3236251
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphorylation of rabbit skeletal muscle myosin in situ.
    Moore RL; Houston ME; Iwamoto GA; Stull JT
    J Cell Physiol; 1985 Nov; 125(2):301-5. PubMed ID: 4055914
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coexistence of potentiation and fatigue in skeletal muscle.
    Rassier DE; Macintosh BR
    Braz J Med Biol Res; 2000 May; 33(5):499-508. PubMed ID: 10775880
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction.
    Jensen TE; Rose AJ; Jørgensen SB; Brandt N; Schjerling P; Wojtaszewski JF; Richter EA
    Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1308-17. PubMed ID: 17213473
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deletion of estrogen receptor α in skeletal muscle results in impaired contractility in female mice.
    Collins BC; Mader TL; Cabelka CA; Iñigo MR; Spangenburg EE; Lowe DA
    J Appl Physiol (1985); 2018 Apr; 124(4):980-992. PubMed ID: 29345963
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cellular and whole muscle studies of activity dependent potentiation.
    MacIntosh BR
    Adv Exp Med Biol; 2010; 682():315-42. PubMed ID: 20824534
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phosphorylation in vivo of the P light chain of myosin in rabbit fast and slow skeletal muscles.
    Westwood SA; Hudlicka O; Perry SV
    Biochem J; 1984 Mar; 218(3):841-7. PubMed ID: 6721836
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels.
    Riquelme MA; Cea LA; Vega JL; Boric MP; Monyer H; Bennett MV; Frank M; Willecke K; Sáez JC
    Neuropharmacology; 2013 Dec; 75():594-603. PubMed ID: 23583931
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Myosin light chain phosphorylation in fast and slow skeletal muscles in situ.
    Moore RL; Stull JT
    Am J Physiol; 1984 Nov; 247(5 Pt 1):C462-71. PubMed ID: 6548609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.