These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30889432)

  • 41. Three-dimensional motion analysis of the cervical spine for comparison of anterior cervical decompression and fusion versus artificial disc replacement in 17 patients: clinical article.
    McDonald CP; Chang V; McDonald M; Ramo N; Bey MJ; Bartol S
    J Neurosurg Spine; 2014 Mar; 20(3):245-55. PubMed ID: 24359000
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro investigation of a new dynamic cervical implant: comparison to spinal fusion and total disc replacement.
    Welke B; Schwarze M; Hurschler C; Book T; Magdu S; Daentzer D
    Eur Spine J; 2016 Jul; 25(7):2247-54. PubMed ID: 26684468
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Artificial cervical vertebra and intervertebral complex replacement through the anterior approach in animal model: a biomechanical and in vivo evaluation of a successful goat model.
    Qin J; He X; Wang D; Qi P; Guo L; Huang S; Cai X; Li H; Wang R
    PLoS One; 2012; 7(12):e52910. PubMed ID: 23300816
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adjacent level intradiscal pressure and segmental kinematics following a cervical total disc arthroplasty: an in vitro human cadaveric model.
    Dmitriev AE; Cunningham BW; Hu N; Sell G; Vigna F; McAfee PC
    Spine (Phila Pa 1976); 2005 May; 30(10):1165-72. PubMed ID: 15897831
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Porous coated motion cervical disc replacement: a biomechanical, histomorphometric, and biologic wear analysis in a caprine model.
    Hu N; Cunningham BW; McAfee PC; Kim SW; Sefter JC; Cappuccino A; Pimenta L
    Spine (Phila Pa 1976); 2006 Jul; 31(15):1666-73. PubMed ID: 16816760
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The facet joint loading profile of a cervical intervertebral disc replacement incorporating a novel saddle-shaped articulation.
    Stieber JR; Quirno M; Kang M; Valdevit A; Errico TJ
    J Spinal Disord Tech; 2011 Oct; 24(7):432-6. PubMed ID: 21336178
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Disc replacement adjacent to cervical fusion: a biomechanical comparison of hybrid construct versus two-level fusion.
    Lee MJ; Dumonski M; Phillips FM; Voronov LI; Renner SM; Carandang G; Havey RM; Patwardhan AG
    Spine (Phila Pa 1976); 2011 Nov; 36(23):1932-9. PubMed ID: 21289581
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intervertebral kinematics of the cervical spine before, during, and after high-velocity low-amplitude manipulation.
    Anderst WJ; Gale T; LeVasseur C; Raj S; Gongaware K; Schneider M
    Spine J; 2018 Dec; 18(12):2333-2342. PubMed ID: 30142458
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study.
    Kandziora F; Pflugmacher R; Scholz M; Schnake K; Lucke M; Schröder R; Mittlmeier T
    Spine (Phila Pa 1976); 2001 May; 26(9):1028-37. PubMed ID: 11337621
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Finite Element Analysis of Influence of Axial Position of Center of Rotation of a Cervical Total Disc Replacement on Biomechanical Parameters: Simulated 2-Level Replacement Based on a Validated Model.
    Li Y; Zhang Z; Liao Z; Mo Z; Liu W
    World Neurosurg; 2017 Oct; 106():932-938. PubMed ID: 28736356
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Biomechanical Analysis of an Artificial Disc With a Shock-absorbing Core Property by Using Whole-cervical Spine Finite Element Analysis.
    Lee JH; Park WM; Kim YH; Jahng TA
    Spine (Phila Pa 1976); 2016 Aug; 41(15):E893-E901. PubMed ID: 26825785
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of lumbar total disc arthroplasty on the segmental motion and intradiscal pressure at the adjacent level: an in vitro biomechanical study: presented at the 2008 Joint Spine Section Meeting Laboratory investigation.
    Ingalhalikar AV; Reddy CG; Lim TH; Torner JC; Hitchon PW
    J Neurosurg Spine; 2009 Dec; 11(6):715-23. PubMed ID: 19951025
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of fixed sagittal plane centers of rotation on motion segment mechanics and range of motion in the cervical spine.
    Kelly BP; Zufelt NA; Sander EJ; DiAngelo DJ
    J Biomech; 2013 Apr; 46(7):1369-75. PubMed ID: 23499226
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative Study Between M6-C and Mobi-C Cervical Artificial Disc Replacement: Biomechanical Outcomes and Comparison with Normative Data.
    Pham M; Phan K; Teng I; Mobbs RJ
    Orthop Surg; 2018 May; 10(2):84-88. PubMed ID: 29878713
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prosthesis design influences segmental contribution to total cervical motion after cervical disc arthroplasty.
    Patwardhan AG; Havey RM
    Eur Spine J; 2020 Nov; 29(11):2713-2721. PubMed ID: 31309331
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of nucleus replacement device properties on lumbar spine mechanics.
    Rundell SA; Guerin HL; Auerbach JD; Kurtz SM
    Spine (Phila Pa 1976); 2009 Sep; 34(19):2022-32. PubMed ID: 19730210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamic foraminal dimensions during neck extension and rotation in fusion and artificial disc replacement: an observational study.
    Yeni YN; Baumer T; Oravec D; Basheer A; McDonald CP; Bey MJ; Bartol SW; Chang V
    Spine J; 2018 Apr; 18(4):575-583. PubMed ID: 28882520
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion.
    Eck JC; Humphreys SC; Lim TH; Jeong ST; Kim JG; Hodges SD; An HS
    Spine (Phila Pa 1976); 2002 Nov; 27(22):2431-4. PubMed ID: 12435970
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Application of a stand-alone interbody fusion cage based on a novel porous TiO2/glass ceramic--2: Biomechanical evaluation after implantation in the sheep cervical spine].
    Korinth MC; Hero T; Pandorf T; Zell D
    Biomed Tech (Berl); 2005 Apr; 50(4):111-8. PubMed ID: 15884708
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Continuous cervical spine kinematics during in vivo dynamic flexion-extension.
    Anderst WJ; Donaldson WF; Lee JY; Kang JD
    Spine J; 2014 Jul; 14(7):1221-7. PubMed ID: 24210579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.