These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30889534)

  • 21. Fermentation of hexoses and pentoses from sugarcane bagasse hydrolysates into ethanol by Spathaspora hagerdaliae.
    Rech FR; Fontana RC; Rosa CA; Camassola M; Ayub MAZ; Dillon AJP
    Bioprocess Biosyst Eng; 2019 Jan; 42(1):83-92. PubMed ID: 30264227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effects of chemically modified sugarcane bagasse on butanol production by immobilized Clostridium acetobutylicum XY16].
    Kong X; He A; Chen J; Chen W; Yin C; Chen P; Wu H; Jiang M
    Sheng Wu Gong Cheng Xue Bao; 2014 Feb; 30(2):305-9. PubMed ID: 24941751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of bioethanol from fermented sugars of sugarcane bagasse produced by lignocellulolytic enzymes of Exiguobacterium sp. VSG-1.
    Vijayalaxmi S; Anu Appaiah KA; Jayalakshmi SK; Mulimani VH; Sreeramulu K
    Appl Biochem Biotechnol; 2013 Sep; 171(1):246-60. PubMed ID: 23832861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct hydrogen production from dilute-acid pretreated sugarcane bagasse hydrolysate using the newly isolated Thermoanaerobacterium thermosaccharolyticum MJ1.
    Hu BB; Zhu MJ
    Microb Cell Fact; 2017 May; 16(1):77. PubMed ID: 28468624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fermentation of undetoxified sugarcane bagasse hydrolyzates using a two stage hydrothermal and mechanical refining pretreatment.
    Wang Z; Dien BS; Rausch KD; Tumbleson ME; Singh V
    Bioresour Technol; 2018 Aug; 261():313-321. PubMed ID: 29677659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis.
    Wanderley MC; Martín C; Rocha GJ; Gouveia ER
    Bioresour Technol; 2013 Jan; 128():448-53. PubMed ID: 23201527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct ethanol production from glucose, xylose and sugarcane bagasse by the corn endophytic fungi Fusarium verticillioides and Acremonium zeae.
    de Almeida MN; Guimarães VM; Falkoski DL; Visser EM; Siqueira GA; Milagres AM; de Rezende ST
    J Biotechnol; 2013 Oct; 168(1):71-7. PubMed ID: 23942376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lime pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse.
    Rabelo SC; Maciel Filho R; Costa AC
    Appl Biochem Biotechnol; 2013 Mar; 169(5):1696-712. PubMed ID: 23334836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol.
    Krishnan C; Sousa Lda C; Jin M; Chang L; Dale BE; Balan V
    Biotechnol Bioeng; 2010 Oct; 107(3):441-50. PubMed ID: 20521302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.
    Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L
    J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation.
    da Silva AS; Inoue H; Endo T; Yano S; Bon EP
    Bioresour Technol; 2010 Oct; 101(19):7402-9. PubMed ID: 20578287
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Techno-economic analysis of ethanol production from sugarcane bagasse using a Liquefaction plus Simultaneous Saccharification and co-Fermentation process.
    Gubicza K; Nieves IU; Sagues WJ; Barta Z; Shanmugam KT; Ingram LO
    Bioresour Technol; 2016 May; 208():42-48. PubMed ID: 26918837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160.
    Geddes CC; Mullinnix MT; Nieves IU; Peterson JJ; Hoffman RW; York SW; Yomano LP; Miller EN; Shanmugam KT; Ingram LO
    Bioresour Technol; 2011 Feb; 102(3):2702-11. PubMed ID: 21111615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media.
    Martini C; Tauk-Tornisielo SM; Codato CB; Bastos RG; Ceccato-Antonini SR
    World J Microbiol Biotechnol; 2016 May; 32(5):80. PubMed ID: 27038950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical conversion of sugarcane bagasse into the alcohol fuel mixture of isopropanol-butanol-ethanol (IBE): Is it economically competitive with cellulosic ethanol?
    Dantas ERS; Bonhivers JC; Maciel Filho R; Mariano AP
    Bioresour Technol; 2020 Oct; 314():123712. PubMed ID: 32604024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis.
    Canilha L; Carvalho W; Felipe Md; Silva JB; Giulietti M
    Appl Biochem Biotechnol; 2010 May; 161(1-8):84-92. PubMed ID: 19802721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis.
    Rao RS; Jyothi ChP; Prakasham RS; Sarma PN; Rao LV
    Bioresour Technol; 2006 Oct; 97(15):1974-8. PubMed ID: 16242318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support.
    Chen P; Tao S; Zheng P
    Bioresour Technol; 2016 Jul; 211():406-13. PubMed ID: 27035471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ethanol production from dilute-acid steam exploded lignocellulosic feedstocks using an isolated multistress-tolerant Pichia kudriavzevii strain.
    Yuan SF; Guo GL; Hwang WS
    Microb Biotechnol; 2017 Nov; 10(6):1581-1590. PubMed ID: 28474425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ethanol production by continuous fermentation of D-(+)-cellobiose, D-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe Caloramator boliviensis.
    Crespo CF; Badshah M; Alvarez MT; Mattiasson B
    Bioresour Technol; 2012 Jan; 103(1):186-91. PubMed ID: 22055102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.