These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 30889828)
61. Insights into the biotransformation of 2,4,6-trinitrotoluene by the old yellow enzyme family of flavoproteins. A computational study. Yang Z; Wei T; Huang H; Yang H; Zhou Y; Xu D Phys Chem Chem Phys; 2019 Jun; 21(22):11589-11598. PubMed ID: 30801593 [TBL] [Abstract][Full Text] [Related]
62. Old Yellow Enzyme from Candida macedoniensis catalyzes the stereospecific reduction of the C=C bond of ketoisophorone. Kataoka M; Kotaka A; Hasegawa A; Wada M; Yoshizumi A; Nakamori S; Shimizu S Biosci Biotechnol Biochem; 2002 Dec; 66(12):2651-7. PubMed ID: 12596862 [TBL] [Abstract][Full Text] [Related]
63. Control of lipase enantioselectivity by engineering the substrate binding site and access channel. Lafaquière V; Barbe S; Puech-Guenot S; Guieysse D; Cortés J; Monsan P; Siméon T; André I; Remaud-Siméon M Chembiochem; 2009 Nov; 10(17):2760-71. PubMed ID: 19816890 [TBL] [Abstract][Full Text] [Related]
64. Key residues for controlling enantioselectivity of Halohydrin dehalogenase from Arthrobacter sp. strain AD2, revealed by structure-guided directed evolution. Tang L; Zhu X; Zheng H; Jiang R; Majeric Elenkov M Appl Environ Microbiol; 2012 Apr; 78(8):2631-7. PubMed ID: 22327597 [TBL] [Abstract][Full Text] [Related]
65. Ligand-induced conformational changes in the capping subdomain of a bacterial old yellow enzyme homologue and conserved sequence fingerprints provide new insights into substrate binding. van den Hemel D; Brigé A; Savvides SN; Van Beeumen J J Biol Chem; 2006 Sep; 281(38):28152-61. PubMed ID: 16857682 [TBL] [Abstract][Full Text] [Related]
66. Old yellow enzyme protects the actin cytoskeleton from oxidative stress. Haarer BK; Amberg DC Mol Biol Cell; 2004 Oct; 15(10):4522-31. PubMed ID: 15304519 [TBL] [Abstract][Full Text] [Related]
67. Ser67Asp and His68Asp substitutions in candida parapsilosis carbonyl reductase alter the coenzyme specificity and enantioselectivity of ketone reduction. Zhang R; Xu Y; Sun Y; Zhang W; Xiao R Appl Environ Microbiol; 2009 Apr; 75(7):2176-83. PubMed ID: 19201968 [TBL] [Abstract][Full Text] [Related]
68. Significant improvement of the enantioselectivity of a halohydrin dehalogenase for asymmetric epoxide ring opening reactions by protein engineering. Xue F; Zhang LH; Xu Q Appl Microbiol Biotechnol; 2020 Mar; 104(5):2067-2077. PubMed ID: 31932896 [TBL] [Abstract][Full Text] [Related]
69. Antimicrobial effect of trans-cinnamaldehyde, (-)-perillaldehyde, (-)-citronellal, citral, eugenol and carvacrol on airborne microbes using an airwasher. Sato K; Krist S; Buchbauer G Biol Pharm Bull; 2006 Nov; 29(11):2292-4. PubMed ID: 17077531 [TBL] [Abstract][Full Text] [Related]
70. Double substituted variant of Bacillus amyloliquefaciens esterase with enhanced enantioselectivity and high activity towards 1-(3',4'-methylenedioxyphenyl)ethyl acetate. Liu JY; Bian HP; Tang Y; Bai YP; Xu JH Appl Microbiol Biotechnol; 2015 Feb; 99(4):1701-8. PubMed ID: 25104035 [TBL] [Abstract][Full Text] [Related]
71. Evidence that serine 304 is not a key ligand-binding residue in the active site of cytochrome P450 2D6. Ellis SW; Hayhurst GP; Lightfoot T; Smith G; Harlow J; Rowland-Yeo K; Larsson C; Mahling J; Lim CK; Wolf CR; Blackburn MG; Lennard MS; Tucker GT Biochem J; 2000 Feb; 345 Pt 3(Pt 3):565-71. PubMed ID: 10642515 [TBL] [Abstract][Full Text] [Related]
72. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae. Kumar VP; Thomas LM; Bobyk KD; Andi B; Cook PF; West AH Biochemistry; 2012 Jan; 51(4):857-66. PubMed ID: 22243403 [TBL] [Abstract][Full Text] [Related]
73. Loop-Grafted Old Yellow Enzymes in the Bienzymatic Cascade Reduction of Allylic Alcohols. Reich S; Nestl BM; Hauer B Chembiochem; 2016 Apr; 17(7):561-5. PubMed ID: 27037735 [TBL] [Abstract][Full Text] [Related]
74. Asymmetric Ene-Reduction by F Kang SW; Antoney J; Lupton DW; Speight R; Scott C; Jackson CJ Chembiochem; 2023 Apr; 24(8):e202200797. PubMed ID: 36716144 [TBL] [Abstract][Full Text] [Related]
75. Mutagenicity testing (+/-)-camphor, 1,8-cineole, citral, citronellal, (-)-menthol and terpineol with the Salmonella/microsome assay. Gomes-Carneiro MR; Felzenszwalb I; Paumgartten FJ Mutat Res; 1998 Aug; 416(1-2):129-36. PubMed ID: 9725999 [TBL] [Abstract][Full Text] [Related]
76. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid. Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204 [TBL] [Abstract][Full Text] [Related]
77. Residue Val237 is critical for the enantioselectivity of Penicillium expansum lipase. Tang L; Su M; Chi L; Zhang J; Zhang H; Zhu L Biotechnol Lett; 2014 Mar; 36(3):633-9. PubMed ID: 24338160 [TBL] [Abstract][Full Text] [Related]
78. Second-Generation Engineering of a Thermostable Transketolase (TK Zhou C; Saravanan T; Lorillière M; Wei D; Charmantray F; Hecquet L; Fessner WD; Yi D Chembiochem; 2017 Mar; 18(5):455-459. PubMed ID: 28005308 [TBL] [Abstract][Full Text] [Related]
79. Asymmetric reduction of ketopantolactone using a strictly (R)-stereoselective carbonyl reductase through efficient NADPH regeneration and the substrate constant-feeding strategy. Zhao M; Gao L; Zhang L; Bai Y; Chen L; Yu M; Cheng F; Sun J; Wang Z; Ying X Biotechnol Lett; 2017 Nov; 39(11):1741-1746. PubMed ID: 28828561 [TBL] [Abstract][Full Text] [Related]