These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30889883)

  • 1. A Multi-Path Compensation Method for Ranging in Wearable Ultrasonic Sensor Networks for Human Gait Analysis.
    Ashhar K; Khyam MO; Soh CB
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30889883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Doppler-Tolerant Ultrasonic Multiple Access Localization System for Human Gait Analysis.
    Ashhar K; Khyam MO; Soh CB; Kong KH
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30060515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A flexible wearable sensor for knee flexion assessment during gait.
    Papi E; Bo YN; McGregor AH
    Gait Posture; 2018 May; 62():480-483. PubMed ID: 29674288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ambulatory measurement of three-dimensional foot displacement during treadmill walking using wearable wireless ultrasonic sensor network.
    Qi Y; Soh CB; Gunawan E; Low KS
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):446-52. PubMed ID: 24759996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards Human Motion Tracking Enhanced by Semi-Continuous Ultrasonic Time-of-Flight Measurements.
    Jahren SE; Aakvaag N; Strisland F; Vogl A; Liberale A; Liverud AE
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33804840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A wearable ultrasonic sensor network for analysis of bilateral gait symmetry.
    Ashhar K; Cheong Boon Soh ; Keng He Kong
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4455-4458. PubMed ID: 29060886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using wearable sensors to classify subject-specific running biomechanical gait patterns based on changes in environmental weather conditions.
    Ahamed NU; Kobsar D; Benson L; Clermont C; Kohrs R; Osis ST; Ferber R
    PLoS One; 2018; 13(9):e0203839. PubMed ID: 30226903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of spatial-temporal gait parameters using a low-cost ultrasonic motion analysis system.
    Qi Y; Soh CB; Gunawan E; Low KS; Thomas R
    Sensors (Basel); 2014 Aug; 14(8):15434-57. PubMed ID: 25140636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A wearable multi-sensor system for real world gait analysis.
    Salis F; Bertuletti S; Scott K; Caruso M; Bonci T; Buckley E; Croce UD; Mazza C; Cereatti A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7020-7023. PubMed ID: 34892719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Fully Wireless Wearable Motion Tracking System with 3D Human Model for Gait Analysis.
    Lee K; Tang W
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34204656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Wearable Magneto-Inertial System for Gait Analysis (H-Gait): Validation on Normal Weight and Overweight/Obese Young Healthy Adults.
    Agostini V; Gastaldi L; Rosso V; Knaflitz M; Tadano S
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29065485
    [No Abstract]   [Full Text] [Related]  

  • 12. Deep Neural Network-Based Gait Classification Using Wearable Inertial Sensor Data.
    Jung D; Nguyen MD; Han J; Park M; Lee K; Yoo S; Kim J; Mun KR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3624-3628. PubMed ID: 31946661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analyzing Gait in the Real World Using Wearable Movement Sensors and Frequently Repeated Movement Paths.
    Wang W; Adamczyk PG
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31022889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ambulatory measurement of foot kinematics using wearable ultrasonic sensors.
    Qi Y; Soh CB; Gunawan E; Low KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6282-5. PubMed ID: 25571433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of an Ear-Worn Wearable Gait Analysis Device.
    Jung CK; Kim J; Rhim HC
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors.
    Martinez-Hernandez U; Dehghani-Sanij AA
    Neural Netw; 2018 Jun; 102():107-119. PubMed ID: 29567532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast Wearable Sensor-Based Foot-Ground Contact Phase Classification Using a Convolutional Neural Network with Sliding-Window Label Overlapping.
    Jeon H; Kim SL; Kim S; Lee D
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32899247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Pediatric SmartShoe: Wearable Sensor System for Ambulatory Monitoring of Physical Activity and Gait.
    Hegde N; Zhang T; Uswatte G; Taub E; Barman J; McKay S; Taylor A; Morris DM; Griffin A; Sazonov ES
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):477-486. PubMed ID: 29432115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-rigid alignment pipeline applied to human gait signals acquired with optical motion capture systems and inertial sensors.
    SoussĂ© R; VerdĂș J; Jauregui R; Ferrer-Roca V; Balocco S
    J Biomech; 2020 Jan; 98():109429. PubMed ID: 31662198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.