These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30889948)

  • 21. Mechanistic Understanding of the Growth Kinetics and Dynamics of Nanoparticle Superlattices by Coupling Interparticle Forces from Real-Time Measurements.
    Lee J; Nakouzi E; Song M; Wang B; Chun J; Li D
    ACS Nano; 2018 Dec; 12(12):12778-12787. PubMed ID: 30422615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adjusting Microscale to Atomic-Scale Structural Order in PbS Nanocrystal Superlattice for Enhanced Photodetector Performance.
    Wang C; Chen Z; Liu Z; Ma T; Chen X; Zhang M; Luo D; Hyun BR; Liu X
    Small; 2023 Aug; 19(32):e2300975. PubMed ID: 37066743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substitutional doping in nanocrystal superlattices.
    Cargnello M; Johnston-Peck AC; Diroll BT; Wong E; Datta B; Damodhar D; Doan-Nguyen VV; Herzing AA; Kagan CR; Murray CB
    Nature; 2015 Aug; 524(7566):450-3. PubMed ID: 26310766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anisotropic Assembly of Nanocrystal/Molecular Hierarchical Superlattices Decoding from Tris-Amide Triarylamines Supramolecular Networks.
    Zhang F; Yang F; Gong Y; Wei Y; Yang Y; Wei J; Yang Z; Pileni MP
    Small; 2020 Dec; 16(48):e2005701. PubMed ID: 33169513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binary Superlattices of Infrared Plasmonic and Excitonic Nanocrystals.
    Brittman S; Mahadik NA; Qadri SB; Yee PY; Tischler JG; Boercker JE
    ACS Appl Mater Interfaces; 2020 May; 12(21):24271-24280. PubMed ID: 32395979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trade-offs between Translational and Orientational Order in 2D Superlattices of Polygonal Nanocrystals with Differing Edge Count.
    Ondry JC; Frechette LB; Geissler PL; Alivisatos AP
    Nano Lett; 2022 Jan; 22(1):389-395. PubMed ID: 34935383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of orientation-ordered superlattices of magnetite magnetic nanocrystals from shape-segregated self-assemblies.
    Song Q; Ding Y; Wang ZL; Zhang ZJ
    J Phys Chem B; 2006 Dec; 110(50):25547-50. PubMed ID: 17166006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perovskite-type superlattices from lead halide perovskite nanocubes.
    Cherniukh I; Rainò G; Stöferle T; Burian M; Travesset A; Naumenko D; Amenitsch H; Erni R; Mahrt RF; Bodnarchuk MI; Kovalenko MV
    Nature; 2021 May; 593(7860):535-542. PubMed ID: 34040208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bistable magnetoresistance switching in exchange-coupled CoFe₂O₄--Fe₃O₄ binary nanocrystal superlattices by self-assembly and thermal annealing.
    Chen J; Ye X; Oh SJ; Kikkawa JM; Kagan CR; Murray CB
    ACS Nano; 2013 Feb; 7(2):1478-86. PubMed ID: 23273052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shape-dependent ordering of gold nanocrystals into large-scale superlattices.
    Gong J; Newman RS; Engel M; Zhao M; Bian F; Glotzer SC; Tang Z
    Nat Commun; 2017 Jan; 8():14038. PubMed ID: 28102198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-dimensional gold trisoctahedron nanoparticle superlattice sheets: self-assembly, characterization and immunosensing applications.
    Dong D; Yap LW; Smilgies DM; Si KJ; Shi Q; Cheng W
    Nanoscale; 2018 Mar; 10(11):5065-5071. PubMed ID: 29503999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices.
    Walravens W; De Roo J; Drijvers E; Ten Brinck S; Solano E; Dendooven J; Detavernier C; Infante I; Hens Z
    ACS Nano; 2016 Jul; 10(7):6861-70. PubMed ID: 27383262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembly of colloidal one-dimensional nanocrystals.
    Zhang SY; Regulacio MD; Han MY
    Chem Soc Rev; 2014 Apr; 43(7):2301-23. PubMed ID: 24413386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals.
    Vanmaekelbergh D; Liljeroth P
    Chem Soc Rev; 2005 Apr; 34(4):299-312. PubMed ID: 15778764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hierarchy in Au nanocrystal ordering in supracrystals: III. Competition between van der Waals and dynamic processes.
    Schaeffer N; Wan Y; Pileni MP
    Langmuir; 2014 Jun; 30(24):7177-81. PubMed ID: 24853914
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A facile post-assembly approach for the fabrication of non-close-packed gold nanocrystal arrays from binary nanocrystal superlattices.
    Piotrowski M; Ge Z; Han X; Wang Y; Bandela AK; Thumu U
    Nanoscale; 2023 Mar; 15(11):5188-5192. PubMed ID: 36861287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals.
    Caruntu D; Rostamzadeh T; Costanzo T; Parizi SS; Caruntu G
    Nanoscale; 2015 Aug; 7(30):12955-69. PubMed ID: 26168304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice.
    Zhuang Z; Peng Q; Zhang B; Li Y
    J Am Chem Soc; 2008 Aug; 130(32):10482-3. PubMed ID: 18636712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-Assembly and Thermal Stability of Binary Superlattices of Gold and Silicon Nanocrystals.
    Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2013 Oct; 4(21):. PubMed ID: 24327828
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site-Specific Ligand Interactions Favor the Tetragonal Distortion of PbS Nanocrystal Superlattices.
    Novák J; Banerjee R; Kornowski A; Jankowski M; André A; Weller H; Schreiber F; Scheele M
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22526-33. PubMed ID: 27504626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.