These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Metabolic alterations in the erythrocyte during blood-stage development of the malaria parasite. Tewari SG; Swift RP; Reifman J; Prigge ST; Wallqvist A Malar J; 2020 Feb; 19(1):94. PubMed ID: 32103749 [TBL] [Abstract][Full Text] [Related]
9. Trafficking of the signature protein of intra-erythrocytic Plasmodium berghei-induced structures, IBIS1, to P. falciparum Maurer's clefts. Petersen W; Matuschewski K; Ingmundson A Mol Biochem Parasitol; 2015; 200(1-2):25-9. PubMed ID: 25956941 [TBL] [Abstract][Full Text] [Related]
10. Targeting a novel Plasmodium falciparum purine recycling pathway with specific immucillins. Ting LM; Shi W; Lewandowicz A; Singh V; Mwakingwe A; Birck MR; Ringia EA; Bench G; Madrid DC; Tyler PC; Evans GB; Furneaux RH; Schramm VL; Kim K J Biol Chem; 2005 Mar; 280(10):9547-54. PubMed ID: 15576366 [TBL] [Abstract][Full Text] [Related]
11. Xanthine oxidase inhibits growth of Plasmodium falciparum in human erythrocytes in vitro. Berman PA; Human L; Freese JA J Clin Invest; 1991 Dec; 88(6):1848-55. PubMed ID: 1752946 [TBL] [Abstract][Full Text] [Related]
12. A comprehensive model of purine uptake by the malaria parasite Plasmodium falciparum: identification of four purine transport activities in intraerythrocytic parasites. Quashie NB; Dorin-Semblat D; Bray PG; Biagini GA; Doerig C; Ranford-Cartwright LC; De Koning HP Biochem J; 2008 Apr; 411(2):287-95. PubMed ID: 18215139 [TBL] [Abstract][Full Text] [Related]
13. Erythrocytic adenosine monophosphate as an alternative purine source in Plasmodium falciparum. Cassera MB; Hazleton KZ; Riegelhaupt PM; Merino EF; Luo M; Akabas MH; Schramm VL J Biol Chem; 2008 Nov; 283(47):32889-99. PubMed ID: 18799466 [TBL] [Abstract][Full Text] [Related]
14. Stage- and time-dependent effects of crisis form factor on Plasmodium falciparum in vitro. Carlin JM; Jensen JB J Parasitol; 1986 Dec; 72(6):852-7. PubMed ID: 2434637 [TBL] [Abstract][Full Text] [Related]
15. Antimalarial properties of bredinin. Prediction based on identification of differences in human host-parasite purine metabolism. Webster HK; Whaun JM J Clin Invest; 1982 Aug; 70(2):461-9. PubMed ID: 7047569 [TBL] [Abstract][Full Text] [Related]
16. The Maurer's cleft protein MAHRP1 is essential for trafficking of PfEMP1 to the surface of Plasmodium falciparum-infected erythrocytes. Spycher C; Rug M; Pachlatko E; Hanssen E; Ferguson D; Cowman AF; Tilley L; Beck HP Mol Microbiol; 2008 Jun; 68(5):1300-14. PubMed ID: 18410498 [TBL] [Abstract][Full Text] [Related]
17. Using a genome-scale metabolic network model to elucidate the mechanism of chloroquine action in Plasmodium falciparum. Tewari SG; Prigge ST; Reifman J; Wallqvist A Int J Parasitol Drugs Drug Resist; 2017 Aug; 7(2):138-146. PubMed ID: 28355531 [TBL] [Abstract][Full Text] [Related]
19. Hypoxanthine: a low molecular weight factor essential for growth of erythrocytic Plasmodium falciparum in a serum-free medium. Asahi H; Kanazawa T; Kajihara Y; Takahashi K; Takahashi T Parasitology; 1996 Jul; 113 ( Pt 1)():19-23. PubMed ID: 8710411 [TBL] [Abstract][Full Text] [Related]
20. Light and electron microscopical observations of the effects of high-density lipoprotein on growth of Plasmodium falciparum in vitro. Imrie H; Ferguson DJ; Carter M; Drain J; Schiflett A; Hajduk SL; Day KP Parasitology; 2004 Jun; 128(Pt 6):577-84. PubMed ID: 15206459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]