BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 30890156)

  • 21. Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing.
    Lu J; Zhao C; Zhao Y; Zhang J; Zhang Y; Chen L; Han Q; Ying Y; Peng S; Ai R; Wang Y
    Nucleic Acids Res; 2018 Mar; 46(5):e25. PubMed ID: 29237052
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-Wide CRISPR/Cas9 Screening for Identification of Cancer Genes in Cell Lines.
    Adelmann CH; Wang T; Sabatini DM; Lander ES
    Methods Mol Biol; 2019; 1907():125-136. PubMed ID: 30542996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-Wide CRISPR/Cas9 Screening for High-Throughput Functional Genomics in Human Cells.
    Zhu S; Zhou Y; Wei W
    Methods Mol Biol; 2017; 1656():175-181. PubMed ID: 28808970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-Scale CRISPR Screens Identify Human Pluripotency-Specific Genes.
    Ihry RJ; Salick MR; Ho DJ; Sondey M; Kommineni S; Paula S; Raymond J; Henry B; Frias E; Wang Q; Worringer KA; Ye C; Russ C; Reece-Hoyes JS; Altshuler RC; Randhawa R; Yang Z; McAllister G; Hoffman GR; Dolmetsch R; Kaykas A
    Cell Rep; 2019 Apr; 27(2):616-630.e6. PubMed ID: 30970262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A high-throughput screening strategy for detecting CRISPR-Cas9 induced mutations using next-generation sequencing.
    Bell CC; Magor GW; Gillinder KR; Perkins AC
    BMC Genomics; 2014 Nov; 15(1):1002. PubMed ID: 25409780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening.
    Joung J; Konermann S; Gootenberg JS; Abudayyeh OO; Platt RJ; Brigham MD; Sanjana NE; Zhang F
    Nat Protoc; 2017 Apr; 12(4):828-863. PubMed ID: 28333914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens.
    Hart T; Tong AHY; Chan K; Van Leeuwen J; Seetharaman A; Aregger M; Chandrashekhar M; Hustedt N; Seth S; Noonan A; Habsid A; Sizova O; Nedyalkova L; Climie R; Tworzyanski L; Lawson K; Sartori MA; Alibeh S; Tieu D; Masud S; Mero P; Weiss A; Brown KR; Usaj M; Billmann M; Rahman M; Constanzo M; Myers CL; Andrews BJ; Boone C; Durocher D; Moffat J
    G3 (Bethesda); 2017 Aug; 7(8):2719-2727. PubMed ID: 28655737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeted gene disruption by use of CRISPR/Cas9 ribonucleoprotein complexes in the water flea Daphnia pulex.
    Hiruta C; Kakui K; Tollefsen KE; Iguchi T
    Genes Cells; 2018 Jun; 23(6):494-502. PubMed ID: 29718583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increasing the performance of pooled CRISPR-Cas9 drop-out screening.
    Cross BC; Lawo S; Archer CR; Hunt JR; Yarker JL; Riccombeni A; Little AS; McCarthy NJ; Moore JD
    Sci Rep; 2016 Aug; 6():31782. PubMed ID: 27545104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tissue-Specific CRISPR-Cas9 Screening in Drosophila.
    Port F; Boutros M
    Methods Mol Biol; 2022; 2540():157-176. PubMed ID: 35980577
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Establishment of a baculovirus-inducible CRISPR/Cas9 system for antiviral research in transgenic silkworms.
    Dong Z; Huang L; Dong F; Hu Z; Qin Q; Long J; Cao M; Chen P; Lu C; Pan MH
    Appl Microbiol Biotechnol; 2018 Nov; 102(21):9255-9265. PubMed ID: 30151606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Key elements for designing and performing a CRISPR/Cas9-based genetic screen.
    Shang W; Wang F; Fan G; Wang H
    J Genet Genomics; 2017 Sep; 44(9):439-449. PubMed ID: 28967615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A CRISPR-Based Toolbox for Studying T Cell Signal Transduction.
    Chi S; Weiss A; Wang H
    Biomed Res Int; 2016; 2016():5052369. PubMed ID: 27057542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice.
    Weber J; Öllinger R; Friedrich M; Ehmer U; Barenboim M; Steiger K; Heid I; Mueller S; Maresch R; Engleitner T; Gross N; Geumann U; Fu B; Segler A; Yuan D; Lange S; Strong A; de la Rosa J; Esposito I; Liu P; Cadiñanos J; Vassiliou GS; Schmid RM; Schneider G; Unger K; Yang F; Braren R; Heikenwälder M; Varela I; Saur D; Bradley A; Rad R
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13982-7. PubMed ID: 26508638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pooled Lentiviral CRISPR-Cas9 Screens for Functional Genomics in Mammalian Cells.
    Aregger M; Chandrashekhar M; Tong AHY; Chan K; Moffat J
    Methods Mol Biol; 2019; 1869():169-188. PubMed ID: 30324523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient CRISPR/Cas9 plasmids for rapid and versatile genome editing in Drosophila.
    Gokcezade J; Sienski G; Duchek P
    G3 (Bethesda); 2014 Sep; 4(11):2279-82. PubMed ID: 25236734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic screens and functional genomics using CRISPR/Cas9 technology.
    Hartenian E; Doench JG
    FEBS J; 2015 Apr; 282(8):1383-93. PubMed ID: 25728500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR-Cas9 for medical genetic screens: applications and future perspectives.
    Xue HY; Ji LJ; Gao AM; Liu P; He JD; Lu XJ
    J Med Genet; 2016 Feb; 53(2):91-7. PubMed ID: 26673779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting.
    Zhou J; Wang J; Shen B; Chen L; Su Y; Yang J; Zhang W; Tian X; Huang X
    FEBS J; 2014 Apr; 281(7):1717-25. PubMed ID: 24494965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.