BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30890594)

  • 1. Children with sickle cell anemia and APOL1 genetic variants develop albuminuria early in life.
    Zahr RS; Rampersaud E; Kang G; Weiss MJ; Wu G; Davis RL; Hankins JS; Estepp JH; Lebensburger J
    Haematologica; 2019 Sep; 104(9):e385-e387. PubMed ID: 30890594
    [No Abstract]   [Full Text] [Related]  

  • 2. Clinical and genetic factors are associated with kidney complications in African children with sickle cell anaemia.
    Adebayo OC; Betukumesu DK; Nkoy AB; Adesoji OM; Ekulu PM; Van den Heuvel LP; Levtchenko EN; Labarque V
    Br J Haematol; 2022 Jan; 196(1):204-214. PubMed ID: 34545573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Modifiers of White Blood Cell Count, Albuminuria and Glomerular Filtration Rate in Children with Sickle Cell Anemia.
    Schaefer BA; Flanagan JM; Alvarez OA; Nelson SC; Aygun B; Nottage KA; George A; Roberts CW; Piccone CM; Howard TA; Davis BR; Ware RE
    PLoS One; 2016; 11(10):e0164364. PubMed ID: 27711207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical and genetic predictors of renal dysfunctions in sickle cell anaemia in Cameroon.
    Geard A; Pule GD; Chetcha Chemegni B; Ngo Bitoungui VJ; Kengne AP; Chimusa ER; Wonkam A
    Br J Haematol; 2017 Aug; 178(4):629-639. PubMed ID: 28466968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brachydactyly: a rare complication of sickle cell anaemia.
    Bosch DGM; van Nieuwenhoven CA; Hoogeboom AJM
    Clin Dysmorphol; 2011 Jul; 20(3):172-173. PubMed ID: 21546827
    [No Abstract]   [Full Text] [Related]  

  • 6. Genetic variants and cell-free hemoglobin processing in sickle cell nephropathy.
    Saraf SL; Zhang X; Shah B; Kanias T; Gudehithlu KP; Kittles R; Machado RF; Arruda JA; Gladwin MT; Singh AK; Gordeuk VR
    Haematologica; 2015 Oct; 100(10):1275-84. PubMed ID: 26206798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA sequencing of isolated cell populations expressing human APOL1 G2 risk variant reveals molecular correlates of sickle cell nephropathy in zebrafish podocytes.
    Bundy JL; Anderson BR; Francescatto L; Garrett ME; Soldano KL; Telen MJ; Davis EE; Ashley-Koch AE
    PLoS One; 2019; 14(6):e0217042. PubMed ID: 31158233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalization of a genetic risk score for time to first albuminuria in children with sickle cell anaemia: SCCRIP cohort study results.
    Rashkin SR; Rampersaud E; Kang G; Ataga KI; Hankins JS; Wang W; Estepp JH; Weiss MJ; Lebensburger J; Zahr RS
    Br J Haematol; 2021 Jul; 194(2):469-473. PubMed ID: 34137022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic Review of Genetic Modifiers Associated with the Development and/or Progression of Nephropathy in Patients with Sickle Cell Disease.
    Labarque V; Okocha EC;
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. APOL1, α-thalassemia, and BCL11A variants as a genetic risk profile for progression of chronic kidney disease in sickle cell anemia.
    Saraf SL; Shah BN; Zhang X; Han J; Tayo BO; Abbasi T; Ostrower A; Guzman E; Molokie RE; Gowhari M; Hassan J; Jain S; Cooper RS; Machado RF; Lash JP; Gordeuk VR
    Haematologica; 2017 Jan; 102(1):e1-e6. PubMed ID: 27658436
    [No Abstract]   [Full Text] [Related]  

  • 11. Unusual β-Globin Haplotype Distribution in Newborns from Bengo, Angola.
    Borges E; Tchonhi C; Couto CSB; Gomes V; Amorim A; Prata MJ; Brito M
    Hemoglobin; 2019 May; 43(3):149-154. PubMed ID: 31394941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability of homozygous sickle cell disease: The role of alpha and beta globin chain variation and other factors.
    Serjeant GR; Vichinsky E
    Blood Cells Mol Dis; 2018 May; 70():66-77. PubMed ID: 28689691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β
    Abou-Elew HH; Youssry I; Hefny S; Hashem RH; Fouad N; Zayed RA
    Hematology; 2018 Jul; 23(6):362-367. PubMed ID: 29157167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation and characterization of induced pluripotent stem cell line (IGIBi001-A) from a sickle cell anemia patient with homozygous β-globin mutation.
    Bhargava N; Jaitly S; Goswami SG; Jain S; Chakraborty D; Ramalingam S
    Stem Cell Res; 2019 Aug; 39():101484. PubMed ID: 31255831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sickle Cell Disease and CKD: An Update.
    Zahr RS; Saraf SL
    Am J Nephrol; 2024; 55(1):56-71. PubMed ID: 37899028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silent β-thalassemia mutations at -101 (C>T) and -71 (C>T) and their coinheritance with the sickle cell mutation in Bahrain.
    Al Moamen NJ; Mahdi F; Salman E; Ahmed T; Abbas R; Al Arrayed S; Sanad H; Ahmed AA
    Hemoglobin; 2013; 37(4):369-77. PubMed ID: 23586372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta-globin gene cluster haplotypes in Yemeni children with sickle cell disease.
    Al-Saqladi AW; Brabin BJ; Bin-Gadeem HA; Kanhai WA; Phylipsen M; Harteveld CL
    Acta Haematol; 2010; 123(3):182-5. PubMed ID: 20224271
    [No Abstract]   [Full Text] [Related]  

  • 18. Sickle cell and silent spleen.
    Tolar J
    Blood; 2015 Apr; 125(17):2589-90. PubMed ID: 25907900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription and translation of
    Ejaz S
    Biosci Rep; 2017 Oct; 37(5):. PubMed ID: 28842513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Surprising Fix for Sickle Cell.
    Weintraub K
    Sci Am; 2016 May; 314(5):24-26. PubMed ID: 27100249
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.