These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 30890622)
1. Work loop dynamics of the pigeon ( Theriault JS; Bahlman JW; Shadwick RE; Altshuler DL J Exp Biol; 2019 Apr; 222(Pt 7):. PubMed ID: 30890622 [TBL] [Abstract][Full Text] [Related]
2. Muscle function during takeoff and landing flight in the pigeon (Columba livia). Robertson AM; Biewener AA J Exp Biol; 2012 Dec; 215(Pt 23):4104-14. PubMed ID: 22972885 [TBL] [Abstract][Full Text] [Related]
3. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion. Chang E; Matloff LY; Stowers AK; Lentink D Sci Robot; 2020 Jan; 5(38):. PubMed ID: 33022590 [TBL] [Abstract][Full Text] [Related]
4. Contractile properties of the pigeon supracoracoideus during different modes of flight. Tobalske BW; Biewener AA J Exp Biol; 2008 Jan; 211(Pt 2):170-9. PubMed ID: 18165244 [TBL] [Abstract][Full Text] [Related]
5. Predicting power-optimal kinematics of avian wings. Parslew B J R Soc Interface; 2015 Jan; 12(102):20140953. PubMed ID: 25392398 [TBL] [Abstract][Full Text] [Related]
6. Flight feather attachment in rock pigeons (Columba livia): covert feathers and smooth muscle coordinate a morphing wing. Hieronymus TL J Anat; 2016 Nov; 229(5):631-656. PubMed ID: 27320170 [TBL] [Abstract][Full Text] [Related]
7. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns. Ros IG; Badger MA; Pierson AN; Bassman LC; Biewener AA J Exp Biol; 2015 Feb; 218(Pt 3):480-90. PubMed ID: 25452503 [TBL] [Abstract][Full Text] [Related]
8. How cockatiels (Nymphicus hollandicus) modulate pectoralis power output across flight speeds. Hedrick TL; Tobalske BW; Biewener AA J Exp Biol; 2003 Apr; 206(Pt 8):1363-78. PubMed ID: 12624171 [TBL] [Abstract][Full Text] [Related]
9. Muscle function in avian flight: achieving power and control. Biewener AA Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1496-506. PubMed ID: 21502121 [TBL] [Abstract][Full Text] [Related]
10. How pigeons couple three-dimensional elbow and wrist motion to morph their wings. Stowers AK; Matloff LY; Lentink D J R Soc Interface; 2017 Aug; 14(133):. PubMed ID: 28794161 [TBL] [Abstract][Full Text] [Related]
12. Regional patterns of pectoralis fascicle strain in the pigeon Columba livia during level flight. Soman A; Hedrick TL; Biewener AA J Exp Biol; 2005 Feb; 208(Pt 4):771-86. PubMed ID: 15695768 [TBL] [Abstract][Full Text] [Related]
13. Stress and strain in the flight muscles as constraints on the evolution of flying animals. Pennycuick CJ J Biomech; 1996 May; 29(5):577-81. PubMed ID: 8707783 [TBL] [Abstract][Full Text] [Related]
14. Wing inertia as a cause of aerodynamically uneconomical flight with high angles of attack in hovering insects. Phan HV; Park HC J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30111558 [TBL] [Abstract][Full Text] [Related]
15. Kinematics and power requirements of ascending and descending flight in the pigeon (Columba livia). Berg AM; Biewener AA J Exp Biol; 2008 Apr; 211(Pt 7):1120-30. PubMed ID: 18344487 [TBL] [Abstract][Full Text] [Related]
16. The broad range of contractile behaviour of the avian pectoralis: functional and evolutionary implications. Jackson BE; Tobalske BW; Dial KP J Exp Biol; 2011 Jul; 214(Pt 14):2354-61. PubMed ID: 21697427 [TBL] [Abstract][Full Text] [Related]
17. Wing and body kinematics of takeoff and landing flight in the pigeon (Columba livia). Berg AM; Biewener AA J Exp Biol; 2010 May; 213(Pt 10):1651-8. PubMed ID: 20435815 [TBL] [Abstract][Full Text] [Related]
18. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight. Phan HV; Truong QT; Park HC Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465 [TBL] [Abstract][Full Text] [Related]
19. Pigeons trade efficiency for stability in response to level of challenge during confined flight. Williams CD; Biewener AA Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3392-6. PubMed ID: 25733863 [TBL] [Abstract][Full Text] [Related]
20. Diversity in the organization of elastin bundles and intramembranous muscles in bat wings. Cheney JA; Allen JJ; Swartz SM J Anat; 2017 Apr; 230(4):510-523. PubMed ID: 28070887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]