These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30890696)

  • 1. Hydroxyl super rotors from vacuum ultraviolet photodissociation of water.
    Chang Y; Yu Y; Wang H; Hu X; Li Q; Yang J; Su S; He Z; Chen Z; Che L; Wang X; Zhang W; Wu G; Xie D; Ashfold MNR; Yuan K; Yang X
    Nat Commun; 2019 Mar; 10(1):1250. PubMed ID: 30890696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronically Excited OH Super-rotors from Water Photodissociation by Using Vacuum Ultraviolet Free-Electron Laser Pulses.
    Chang Y; An F; Li Q; Luo Z; Che L; Yang J; Chen Z; Zhang W; Wu G; Hu X; Xie D; Yuan K; Yang X
    J Phys Chem Lett; 2020 Sep; 11(18):7617-7623. PubMed ID: 32830973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemistry of the water molecule: adiabatic versus nonadiabatic dynamics.
    Yuan K; Dixon RN; Yang X
    Acc Chem Res; 2011 May; 44(5):369-78. PubMed ID: 21428277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonadiabatic dissociation dynamics in H2O: Competition between rotationally and nonrotationally mediated pathways.
    Yuan K; Cheng Y; Cheng L; Guo Q; Dai D; Wang X; Yang X; Dixon RN
    Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19148-53. PubMed ID: 19047628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Torsion-Vibration Coupling in the Overtone Spectrum and Vibrationally Mediated Photochemistry of CH
    Dzugan LC; Matthews J; Sinha A; McCoy AB
    J Phys Chem A; 2017 Dec; 121(48):9262-9274. PubMed ID: 29172536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the rovibrationally excited C2H4OH radicals from the photodissociation of 2-bromoethanol at 193 nm.
    Ratliff BJ; Womack CC; Tang XN; Landau WM; Butler LJ; Szpunar DE
    J Phys Chem A; 2010 Apr; 114(14):4934-45. PubMed ID: 20302318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodissociation dynamics of H
    Wang H; Yu Y; Chang Y; Su S; Yu S; Li Q; Tao K; Ding H; Yang J; Wang G; Che L; He Z; Chen Z; Wang X; Zhang W; Dai D; Wu G; Yuan K; Yang X
    J Chem Phys; 2018 Mar; 148(12):124301. PubMed ID: 29604834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water Photolysis and Its Contributions to the Hydroxyl Dayglow Emissions in the Atmospheres of Earth and Mars.
    Chang Y; Li Q; An F; Luo Z; Zhao Y; Yu Y; He Z; Chen Z; Che L; Ding H; Zhang W; Wu G; Hu X; Xie D; Plane JMC; Feng W; Western CM; Ashfold MNR; Yuan K; Yang X
    J Phys Chem Lett; 2020 Nov; 11(21):9086-9092. PubMed ID: 33047964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrationally excited molecular hydrogen production from the water photochemistry.
    Chang Y; An F; Chen Z; Luo Z; Zhao Y; Hu X; Yang J; Zhang W; Wu G; Xie D; Yuan K; Yang X
    Nat Commun; 2021 Nov; 12(1):6303. PubMed ID: 34728635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodissociation dynamics of acetoxime in gas phase.
    Dhanya S; Upadhyaya HP; Kumar A; Naik PD; Saini RD
    J Chem Phys; 2005 May; 122(18):184322. PubMed ID: 15918719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Desorption of hydroxyl radicals in the vacuum ultraviolet photolysis of amorphous solid water at 90 K.
    Hama T; Yabushita A; Yokoyama M; Kawasaki M; Andersson S
    J Chem Phys; 2009 Aug; 131(5):054508. PubMed ID: 19673575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of OH radicals in the formation of oxygen molecules following vacuum ultraviolet photodissociation of amorphous solid water.
    Hama T; Yokoyama M; Yabushita A; Kawasaki M
    J Chem Phys; 2010 Sep; 133(10):104504. PubMed ID: 20849175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The conical intersection dominates the generation of tropospheric hydroxyl radicals from NO2 and H2O.
    Fang Q; Han J; Jiang J; Chen X; Fang W
    J Phys Chem A; 2010 Apr; 114(13):4601-8. PubMed ID: 20235498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photodissociation dynamics of enolic 1,2-cyclohexanedione at 266, 248, and 193 nm: mechanism and nascent state product distribution of OH.
    Kawade M; Saha A; Upadhyaya HP; Kumar A; Naik PD
    J Phys Chem A; 2013 Mar; 117(12):2415-26. PubMed ID: 23444923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extremely rotationally excited OH from water (HOD) photodissociation through conical intersection.
    Harich SA; Yang X; Yang X; Dixon RN
    Phys Rev Lett; 2001 Dec; 87(25):253201. PubMed ID: 11736573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial distribution of FIR rotationally excited CH
    Parikka A; Habart E; Bernard-Salas J; Goicoechea JR; Abergel A; Pilleri P; Dartois E; Joblin C; Gerin M; Godard B
    Astron Astrophys; 2017 Mar; 599():. PubMed ID: 28260804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacuum ultraviolet photodissociation dynamics of isocyanic acid: the hydrogen elimination channel.
    Yu S; Su S; Dai D; Yuan K; Yang X
    J Phys Chem A; 2013 Dec; 117(50):13564-71. PubMed ID: 24041201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vacuum ultraviolet photodissociation dynamics of N
    Yu S; Yuan D; Chen W; Xie T; Zhou J; Wang T; Chen Z; Yuan K; Yang X; Wang X
    J Chem Phys; 2018 Sep; 149(10):104309. PubMed ID: 30219012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of inorganics on the degradation of micropollutants with vacuum UV (VUV) advanced oxidation.
    Duca C; Imoberdorf G; Mohseni M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 May; 52(6):524-532. PubMed ID: 28276889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics at conical intersections: the influence of O-H stretching vibrations on the photodissociation of phenol.
    Hause ML; Heidi Yoon Y; Case AS; Crim FF
    J Chem Phys; 2008 Mar; 128(10):104307. PubMed ID: 18345888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.