These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 30890706)

  • 21. Bacillus thuringiensis in caterpillars and associated materials collected from protected tropical forests in northwestern Costa Rica.
    Rodríguez-Sánchez C; Sittenfeld A; Janzen DH; Espinoza AM
    Rev Biol Trop; 2006 Jun; 54(2):265-71. PubMed ID: 18494297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Herbivorous Caterpillars and the Green Leaf Volatile (GLV) Quandary.
    Jones AC; Cofer TM; Engelberth J; Tumlinson JH
    J Chem Ecol; 2022 Mar; 48(3):337-345. PubMed ID: 34807370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Herbivorous Caterpillars Can Utilize Three Mechanisms to Alter Green Leaf Volatile Emission.
    Jones AC; Seidl-Adams I; Engelberth J; Hunter CT; Alborn H; Tumlinson JH
    Environ Entomol; 2019 Apr; 48(2):419-425. PubMed ID: 30668656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The consequence of leaf life span to virus infection of herbivorous insects.
    Pan VS; Pepi A; LoPresti EF; Karban R
    Oecologia; 2023 Feb; 201(2):449-459. PubMed ID: 36692690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cultivated Sub-Populations of Soil Microbiomes Retain Early Flowering Plant Trait.
    Panke-Buisse K; Lee S; Kao-Kniffin J
    Microb Ecol; 2017 Feb; 73(2):394-403. PubMed ID: 27655524
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changing interactions among persistent species as the major driver of seasonal turnover in plant-caterpillar interactions.
    Lepesqueur C; Scherrer S; Vieira MC; Almeida-Neto M; Salcido DM; Dyer LA; Diniz IR
    PLoS One; 2018; 13(9):e0203164. PubMed ID: 30188923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects.
    Jones AG; Mason CJ; Felton GW; Hoover K
    Sci Rep; 2019 Feb; 9(1):2792. PubMed ID: 30808905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of Soil Rhizobacteria Inoculation and Leaf-Chewing Insect Herbivory on Mentha piperita Leaf Secondary Metabolites.
    Del Rosario Cappellari L; Chiappero J; Palermo TB; Giordano W; Banchio E
    J Chem Ecol; 2020 Jul; 46(7):619-630. PubMed ID: 32577987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High mortality, fluctuation in numbers, and heavy subterranean insect herbivory in bush lupine, Lupinus arboreus.
    Strong DR; Maron JL; Connors PG; Whipple A; Harrison S; Jefferies RL
    Oecologia; 1995 Sep; 104(1):85-92. PubMed ID: 28306917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How well do specialist feeders regulate nutrient intake? Evidence from a gregarious tree-feeding caterpillar.
    Despland E; Noseworthy M
    J Exp Biol; 2006 Apr; 209(Pt 7):1301-9. PubMed ID: 16547301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fungi are more transient than bacteria in caterpillar gut microbiomes.
    Šigut M; Pyszko P; Šigutová H; Višňovská D; Kostovčík M; Kotásková N; Dorňák O; Kolařík M; Drozd P
    Sci Rep; 2022 Sep; 12(1):15552. PubMed ID: 36114345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of host species and sexual dimorphism differ among root, leaf and flower microbiomes of wild strawberries in situ.
    Wei N; Ashman TL
    Sci Rep; 2018 Mar; 8(1):5195. PubMed ID: 29581521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The microbiome of the Melitaea cinxia butterfly shows marked variation but is only little explained by the traits of the butterfly or its host plant.
    Minard G; Tikhonov G; Ovaskainen O; Saastamoinen M
    Environ Microbiol; 2019 Nov; 21(11):4253-4269. PubMed ID: 31436012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple interaction types determine the impact of ant predation of caterpillars in a forest community.
    Clark RE; Farkas TE; Lichter-Marck I; Johnson ER; Singer MS
    Ecology; 2016 Dec; 97(12):3379-3388. PubMed ID: 27861790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalpa bignonioides alters extrafloral nectar production after herbivory and attracts ant bodyguards.
    Ness JH
    Oecologia; 2003 Jan; 134(2):210-8. PubMed ID: 12647162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The host jasmonic acid pathway regulates the transcriptomic changes of dodder and host plant under the scenario of caterpillar feeding on dodder.
    Qin Y; Zhang J; Hettenhausen C; Liu H; Li S; Shen G; Cao G; Wu J
    BMC Plant Biol; 2019 Dec; 19(1):540. PubMed ID: 31801469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential Impact of Herbivores from Three Feeding Guilds on Systemic Secondary Metabolite Induction, Phytohormone Levels and Plant-Mediated Herbivore Interactions.
    Eisenring M; Glauser G; Meissle M; Romeis J
    J Chem Ecol; 2018 Dec; 44(12):1178-1189. PubMed ID: 30267359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Food quality, competition, and parasitism influence feeding preference in a neotropical lepidopteran.
    Kursar TA; Wolfe BT; Epps MJ; Coley PD
    Ecology; 2006 Dec; 87(12):3058-69. PubMed ID: 17249231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Higher plasticity in feeding preference of a generalist than a specialist: experiments with two closely related Helicoverpa species.
    Wang Y; Ma Y; Zhou DS; Gao SX; Zhao XC; Tang QB; Wang CZ; van Loon JJA
    Sci Rep; 2017 Dec; 7(1):17876. PubMed ID: 29259307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acquiring nutrients from tree leaves: effects of leaf maturity and development type on a generalist caterpillar.
    Barbehenn RV; Kapila M; Kileen S; Nusbaum CP
    Oecologia; 2017 May; 184(1):59-73. PubMed ID: 28342011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.