BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30891287)

  • 1. Enhancement in acoustic focusing of micro and nanoparticles by thinning a microfluidic device.
    Ota N; Yalikun Y; Suzuki T; Lee SW; Hosokawa Y; Goda K; Tanaka Y
    R Soc Open Sci; 2019 Feb; 6(2):181776. PubMed ID: 30891287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells.
    Gautam GP; Burger T; Wilcox A; Cumbo MJ; Graves SW; Piyasena ME
    Anal Bioanal Chem; 2018 May; 410(14):3385-3394. PubMed ID: 29651523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Silicon Microfluidic Chips for Acoustic Particle Focusing Using Direct Laser Writing.
    Fornell A; Söderbäck P; Liu Z; De Albuquerque Moreira M; Tenje M
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31972982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enriching Nanoparticles via Acoustofluidics.
    Mao Z; Li P; Wu M; Bachman H; Mesyngier N; Guo X; Liu S; Costanzo F; Huang TJ
    ACS Nano; 2017 Jan; 11(1):603-612. PubMed ID: 28068078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Acoustic Wave-Based Microfluidic Device for Microparticles Manipulation: Effects of Microchannel Elasticity on the Device Performance.
    Mezzanzanica G; Français O; Mariani S
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffraction-based acoustic manipulation in microchannels enables continuous particle and bacteria focusing.
    Devendran C; Choi K; Han J; Ai Y; Neild A; Collins DJ
    Lab Chip; 2020 Aug; 20(15):2674-2688. PubMed ID: 32608464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous Enrichment and Separation of Nanoparticles via Acoustic Streaming.
    Yang Y; He M; Jin K; Chen X; Duan X
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2231-2234. PubMed ID: 33018451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiation dominated acoustophoresis driven by surface acoustic waves.
    Guo J; Kang Y; Ai Y
    J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustofluidics 19: ultrasonic microrobotics in cavities: devices and numerical simulation.
    Dual J; Hahn P; Leibacher I; Möller D; Schwarz T; Wang J
    Lab Chip; 2012 Oct; 12(20):4010-21. PubMed ID: 22971740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.
    Collins DJ; Ma Z; Han J; Ai Y
    Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influences of microparticle radius and microchannel height on SSAW-based acoustophoretic aggregation.
    Dong J; Liang D; Yang X; Sun C
    Ultrasonics; 2021 Dec; 117():106547. PubMed ID: 34419898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of silicon, glass, FR4, PDMS and PMMA as a chip material for acoustic particle/cell manipulation in microfluidics.
    Açıkgöz HN; Karaman A; Şahin MA; Çaylan ÖR; Büke GC; Yıldırım E; Eroğlu İC; Erson-Bensan AE; Çetin B; Özer MB
    Ultrasonics; 2023 Mar; 129():106911. PubMed ID: 36528906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible/Bendable Acoustofluidics Based on Thin-Film Surface Acoustic Waves on Thin Aluminum Sheets.
    Wang Y; Zhang Q; Tao R; Xie J; Canyelles-Pericas P; Torun H; Reboud J; McHale G; Dodd LE; Yang X; Luo J; Wu Q; Fu Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16978-16986. PubMed ID: 33813830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle separation by phase modulated surface acoustic waves.
    Simon G; Andrade MAB; Reboud J; Marques-Hueso J; Desmulliez MPY; Cooper JM; Riehle MO; Bernassau AL
    Biomicrofluidics; 2017 Sep; 11(5):054115. PubMed ID: 29152026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic Particle Manipulation in Glass Capillaries: A Concise Review.
    Liu G; Lei J; Cheng F; Li K; Ji X; Huang Z; Guo Z
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle separation in microfluidics using different modal ultrasonic standing waves.
    Zhang Y; Chen X
    Ultrason Sonochem; 2021 Jul; 75():105603. PubMed ID: 34044322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Varying the agglomeration position of particles in a micro-channel using Acoustic Radiation Force beyond the resonance condition.
    Dron O; Aider JL
    Ultrasonics; 2013 Sep; 53(7):1280-7. PubMed ID: 23628114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial flow focusing: a case study in optimizing cellular trajectory through a microfluidic MEMS device for timing-critical applications.
    Patterson LHC; Walker JL; Naivar MA; Rodriguez-Mesa E; Hoonejani MR; Shields K; Foster JS; Doyle AM; Valentine MT; Foster KL
    Biomed Microdevices; 2020 Aug; 22(3):52. PubMed ID: 32770358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic manipulation of particles in a cylindrical cavity: Theoretical and experimental study on the effects of boundary conditions.
    Xu D; Cai F; Chen M; Li F; Wang C; Meng L; Xu D; Wang W; Wu J; Zheng H
    Ultrasonics; 2019 Mar; 93():18-25. PubMed ID: 30384006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.