These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 3089152)

  • 1. Intergeneric hybrids of Saccharomyces cerevisiae and Zygosaccharomyces fermentati obtained by protoplast fusion.
    Pina A; Calderón IL; Benítez T
    Appl Environ Microbiol; 1986 May; 51(5):995-1003. PubMed ID: 3089152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection of strains capable of utilizing D-xylose and cellobiose to produce ethanol by electric field-induced protoplast fusion.
    Wang Y; Song L; Zhou Y
    Chin J Biotechnol; 1992; 8(1):51-6. PubMed ID: 1457722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycerol and arabitol production by an intergeneric hybrid, PB2, obtained by protoplast fusion between Saccharomyces cerevisiae and Torulaspora delbrueckii.
    Lucca ME; Spencer JF; de Figueroa LI
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):472-6. PubMed ID: 12172612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid construction by fusion of protoplasts of Endomycopsis fibuligera and Saccharomyces cerevisiae.
    Gautam SP; Gupta AK; Pandey S
    Cytobios; 1993; 73(294-295):183-8. PubMed ID: 7684665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segregation of altered parental properties in fusions between Saccharomyces cerevisiae and the D-xylose fermenting yeasts Candida shehatae and Pichia stipitis.
    Gupthar AS
    Can J Microbiol; 1992 Dec; 38(12):1233-7. PubMed ID: 1288841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the biochemical and fermentation attributes of Lachancea species and strains: Deciphering the potential contribution to wine chemical composition.
    Porter TJ; Divol B; Setati ME
    Int J Food Microbiol; 2019 Feb; 290():273-287. PubMed ID: 30412799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose.
    Guo ZP; Zhang L; Ding ZY; Gu ZH; Shi GY
    Enzyme Microb Technol; 2011 Jun; 49(1):105-12. PubMed ID: 22112279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrids obtained by protoplast fusion with a salt-tolerant yeast.
    Loray MA; Spencer JF; Spencer DM; de Figueroa LI
    J Ind Microbiol; 1995 Jun; 14(6):508-13. PubMed ID: 7662292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Bioethanol Production by
    Zheng J; Negi A; Khomlaem C; Kim BS
    J Microbiol Biotechnol; 2019 Jun; 29(6):905-912. PubMed ID: 31154746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of the industrial ethanol-producing strain of Saccharomyces cerevisiae able to ferment cellobiose and melibiose.
    Zhang L; Guo ZP; Ding ZY; Wang ZX; Shi GY
    Prikl Biokhim Mikrobiol; 2012; 48(2):243-8. PubMed ID: 22586919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of a codon-optimized β-glucosidase from Cellulomonas flavigena PR-22 in Saccharomyces cerevisiae for bioethanol production from cellobiose.
    Ríos-Fránquez FJ; González-Bautista E; Ponce-Noyola T; Ramos-Valdivia AC; Poggi-Varaldo HM; García-Mena J; Martinez A
    Arch Microbiol; 2017 May; 199(4):605-611. PubMed ID: 28138738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactic fermentation of cellobiose by a yeast strain displaying beta-glucosidase on the cell surface.
    Tokuhiro K; Ishida N; Kondo A; Takahashi H
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):481-8. PubMed ID: 18443785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of glucose and cellobiose by Candida wickerhamii and Clavispora lusitaniae.
    Freer SN; Greene RV
    J Biol Chem; 1990 Aug; 265(22):12864-8. PubMed ID: 2115884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion.
    Hou X; Yao S
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2591-601. PubMed ID: 22116630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation.
    Lee WH; Jin YS
    J Biotechnol; 2017 Mar; 245():1-8. PubMed ID: 28143766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae.
    Bae YH; Kang KH; Jin YS; Seo JH
    J Biotechnol; 2014 Jan; 169():34-41. PubMed ID: 24184384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved method for protoplast formation and its application in the fusion of Rhodotorula rubra with Saccharomyces cerevisiae.
    Evans CT; Conrad D
    Arch Microbiol; 1987 Jun; 148(1):77-82. PubMed ID: 3307677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal β-glucosidase expression in Saccharomyces cerevisiae.
    Njokweni AP; Rose SH; van Zyl WH
    J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1445-52. PubMed ID: 22707073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intergeneric transfer of deoxyribonucleic acid killer plasmids, pGKl1 and pGKl2, from Kluyveromyces lactis into Saccharomyces cerevisiae by cell fusion.
    Gunge N; Sakaguchi K
    J Bacteriol; 1981 Jul; 147(1):155-60. PubMed ID: 7016841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose.
    Lee WH; Jin YS
    J Microbiol Biotechnol; 2017 Sep; 27(9):1649-1656. PubMed ID: 28683531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.