These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3089152)

  • 21. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose.
    Lee WH; Jin YS
    J Microbiol Biotechnol; 2017 Sep; 27(9):1649-1656. PubMed ID: 28683531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequential incubation of Candida shehatae and ethanol-tolerant yeast cells for efficient ethanol production from a mixture of glucose, xylose and cellobiose.
    Guan D; Li Y; Shiroma R; Ike M; Tokuyasu K
    Bioresour Technol; 2013 Mar; 132():419-22. PubMed ID: 23280092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of a Saccharomyces cerevisiae strain able to ferment cellobiose.
    Adam AC; Polaina J
    Curr Genet; 1991 Jul; 20(1-2):5-8. PubMed ID: 1934117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complementation of auxotrophic requirements in a diploid strain of Saccharomyces cerevisiae by protoplast fusion with protoplasts of Hansenula wingei.
    Spencer JF; Spencer DM; Reynolds NC; Cromie RL; Bruce IJ
    Yeast; 1989 Apr; 5 Spec No():S293-6. PubMed ID: 2665363
    [No Abstract]   [Full Text] [Related]  

  • 25. Study on the protoplast fusion between a thermotolerant yeast and Saccharomyces cerevisiae.
    Fang AQ; Li SL; Chen YW; Li P
    Chin J Biotechnol; 1990; 6(3):207-13. PubMed ID: 2104211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae.
    Nan H; Seo SO; Oh EJ; Seo JH; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5757-64. PubMed ID: 24743979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochemical analysis of cellobiose catabolism in Candida pseudointermedia strains isolated from rotten wood.
    Barrilli ÉT; Tadioto V; Milani LM; Deoti JR; Fogolari O; Müller C; Barros KO; Rosa CA; Dos Santos AA; Stambuk BU; Treichel H; Alves SL
    Arch Microbiol; 2020 Sep; 202(7):1729-1739. PubMed ID: 32328754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing beta-glucosidase.
    Shen Y; Zhang Y; Ma T; Bao X; Du F; Zhuang G; Qu Y
    Bioresour Technol; 2008 Jul; 99(11):5099-103. PubMed ID: 17976983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exceptional hexose-fermenting ability of the xylitol-producing yeast Candida guilliermondii FTI 20037.
    Wen X; Sidhu S; Horemans SKC; Sooksawat N; Harner NK; Bajwa PK; Yuan Z; Lee H
    J Biosci Bioeng; 2016 Jun; 121(6):631-637. PubMed ID: 26596373
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains.
    van Rooyen R; Hahn-Hägerdal B; La Grange DC; van Zyl WH
    J Biotechnol; 2005 Nov; 120(3):284-95. PubMed ID: 16084620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterologous secretory expression of β-glucosidase from Thermoascus aurantiacus in industrial Saccharomyces cerevisiae strains.
    Smekenov I; Bakhtambayeva M; Bissenbayev K; Saparbayev M; Taipakova S; Bissenbaev AK
    Braz J Microbiol; 2020 Mar; 51(1):107-123. PubMed ID: 31776864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA relatedness among species of the genus Zygosaccharomyces.
    Kurtzman CP
    Yeast; 1990; 6(3):213-9. PubMed ID: 2349835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inheritance of brewing-relevant phenotypes in constructed Saccharomyces cerevisiae × Saccharomyces eubayanus hybrids.
    Krogerus K; Seppänen-Laakso T; Castillo S; Gibson B
    Microb Cell Fact; 2017 Apr; 16(1):66. PubMed ID: 28431563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reactions of Saccharomyces cerevisiae and Zygosaccharomyces bailii to sulphite.
    Pilkington BJ; Rose AH
    J Gen Microbiol; 1988 Oct; 134(10):2823-30. PubMed ID: 3076174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct fermentation of amorphous cellulose to ethanol by engineered Saccharomyces cerevisiae coexpressing Trichoderma viride EG3 and BGL1.
    Gong Y; Tang G; Wang M; Li J; Xiao W; Lin J; Liu Z
    J Gen Appl Microbiol; 2014; 60(5):198-206. PubMed ID: 25420425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Construction of yeast fusants of directly transform starch into ethanol].
    Pang XY; Wang JY; Zhao FS
    Sheng Wu Gong Cheng Xue Bao; 2001 Mar; 17(2):165-9. PubMed ID: 11411224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
    Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS
    Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Introduction of flocculation into industrial yeast, Saccharomyces cerevisiae saké, by protoplast fusion.
    Lima N; Moreira C; Teixeira JA; Mota M
    Microbios; 1995; 81(328):187-97. PubMed ID: 7752958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biosynthesis regulation of the beta-glucosidase produced by a yeast strain transformed by genetic engineering.
    Leclerc M; Chemardin P; Arnaud A; Ratomahenina R; Galzy P; Gerbaud C; Raynal A
    Arch Microbiol; 1986 Nov; 146(2):115-7. PubMed ID: 3099720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and genomic elucidation of hybrid yeast with improved glucose-xylose co-fermentation at high temperature.
    Lin Y; Cai Y; Guo Y; Li X; Qi X; Qi Q; Wang Q
    FEMS Yeast Res; 2019 May; 19(3):. PubMed ID: 30776066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.