BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 3089165)

  • 1. Chemical modification of rabbit skeletal muscle phosphorylase kinase with phenylglyoxal.
    Soman G; Graves DJ
    Arch Biochem Biophys; 1986 Jul; 248(1):341-52. PubMed ID: 3089165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of phosphorylase kinase with the 2',3'-dialdehyde derivative of adenosine triphosphate. 1. Kinetics of inactivation.
    King MM; Carlson GM
    Biochemistry; 1981 Jul; 20(15):4382-7. PubMed ID: 7284329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modification of the calmodulin-stimulated phosphatase, calcineurin, by phenylglyoxal.
    King MM; Heiny LP
    J Biol Chem; 1987 Aug; 262(22):10658-62. PubMed ID: 3611085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of flavonoids with rabbit muscle phosphorylase kinase.
    Kyriakidis SM; Sotiroudis TG; Evangelopoulos AE
    Biochim Biophys Acta; 1986 Jun; 871(2):121-9. PubMed ID: 3085712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of ATP, ADP and magnesium ions on the activity of phosphorylase kinase from rabbit skeletal muscles].
    Shur SA; Vul'fson PL
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1985; (11):31-5. PubMed ID: 4084617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae.
    Malebrán LP; Cardemil E
    Biochim Biophys Acta; 1987 Oct; 915(3):385-92. PubMed ID: 3307926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine-specific modification of rabbit muscle phosphoglucose isomerase: differences in the inactivation by phenylglyoxal and butanedione and in the protection by substrate analogs.
    Pullan LM; Igarashi P; Noltmann EA
    Arch Biochem Biophys; 1983 Mar; 221(2):489-98. PubMed ID: 6838203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylase kinase from chicken skeletal muscle. Quaternary structure, regulatory properties and partial proteolysis.
    Andreeva IE; Livanova NB; Eronina TB; Silonova GV; Poglazov BF
    Eur J Biochem; 1986 Jul; 158(1):99-106. PubMed ID: 3089780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine 5'-diphosphate as an allosteric effector of phosphorylase kinase from rabbit skeletal muscle.
    Cheng A; Fitzgerald TJ; Carlson GM
    J Biol Chem; 1985 Feb; 260(4):2535-42. PubMed ID: 3972796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of phosphorylase kinase with the 2',3'-dialdehyde derivative of adenosine triphosphate. 2. Differential inactivation measured with various protein substrates.
    King MM; Carlson GM
    Biochemistry; 1981 Jul; 20(15):4387-93. PubMed ID: 6793064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation-sensitive modification of the type II calmodulin-dependent protein kinase by phenylglyoxal.
    King MM
    J Biol Chem; 1988 Apr; 263(10):4754-7. PubMed ID: 3350811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Regulatory properties of phosphorylase from chicken skeletal muscle].
    Andreeva IE; Livanova NB; Eronina TB; Poglazov BF
    Biokhimiia; 1985 Oct; 50(10):1646-52. PubMed ID: 4074775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competition between nucleoside diphosphates and triphosphates at the catalytic and allosteric sites of phosphorylase kinase.
    Cheng A; Carlson GM
    J Biol Chem; 1988 Apr; 263(12):5543-9. PubMed ID: 3356697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ATP-binding site in gamma subunit of phosphorylase kinase.
    Tagaya M; Hayakawa Y; Fukui T
    J Biol Chem; 1988 Jul; 263(21):10219-23. PubMed ID: 3392010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of initial autophosphorylation events in rabbit skeletal muscle phosphorylase kinase.
    King MM; Fitzgerald TJ; Carlson GM
    J Biol Chem; 1983 Aug; 258(16):9925-30. PubMed ID: 6604053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Inhibition of the phosphorylase kinase activity by ATP analogs and their binding to the enzyme subunits].
    Guliaeva NV; Vul'fson PL; Severin ES
    Biokhimiia; 1978 Feb; 43(2):373-82. PubMed ID: 647085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of an arginyl residue in the catalytic activity of myosin heads.
    Mornet D; Pantel P; Audemard E; Kassab R
    Eur J Biochem; 1979 Oct; 100(2):421-31. PubMed ID: 41710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of two essential cysteines in rabbit muscle pyruvate kinase by the guanine nucleotide analogue 5'[p-(fluorosulfonyl) benzoyl] guanosine.
    Tomich JM; Marti C; Colman RF
    Biochemistry; 1981 Nov; 20(23):6711-20. PubMed ID: 7306531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of liver prenyl transferase and its inactivation by phenylglyoxal.
    Barnard GF; Popják G
    Biochim Biophys Acta; 1980 Feb; 617(2):169-82. PubMed ID: 7357016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification of arginine residues of rat liver S-adenosylhomocysteinase.
    Takata Y; Fujioka M
    J Biol Chem; 1983 Jun; 258(12):7374-8. PubMed ID: 6863250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.