These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 30891661)
1. Predicting light-induced stomatal movements based on the redox state of plastoquinone: theory and validation. Kromdijk J; Głowacka K; Long SP Photosynth Res; 2019 Jul; 141(1):83-97. PubMed ID: 30891661 [TBL] [Abstract][Full Text] [Related]
2. Opinion: the red-light response of stomatal movement is sensed by the redox state of the photosynthetic electron transport chain. Busch FA Photosynth Res; 2014 Feb; 119(1-2):131-40. PubMed ID: 23483292 [TBL] [Abstract][Full Text] [Related]
4. An improved representation of the relationship between photosynthesis and stomatal conductance leads to more stable estimation of conductance parameters and improves the goodness-of-fit across diverse data sets. Lamour J; Davidson KJ; Ely KS; Le Moguédec G; Leakey ADB; Li Q; Serbin SP; Rogers A Glob Chang Biol; 2022 Jun; 28(11):3537-3556. PubMed ID: 35090072 [TBL] [Abstract][Full Text] [Related]
5. Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. Xiong D; Douthe C; Flexas J Plant Cell Environ; 2018 Feb; 41(2):436-450. PubMed ID: 29220546 [TBL] [Abstract][Full Text] [Related]
6. The reduced state of the plastoquinone pool is required for chloroplast-mediated stomatal closure in response to calcium stimulation. Wang WH; He EM; Chen J; Guo Y; Chen J; Liu X; Zheng HL Plant J; 2016 Apr; 86(2):132-44. PubMed ID: 26945669 [TBL] [Abstract][Full Text] [Related]
7. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem. Renninger HJ; Carlo N; Clark KL; Schäfer KV Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856 [TBL] [Abstract][Full Text] [Related]
8. Acclimation to Fluctuating Light Impacts the Rapidity of Response and Diurnal Rhythm of Stomatal Conductance. Matthews JSA; Vialet-Chabrand S; Lawson T Plant Physiol; 2018 Mar; 176(3):1939-1951. PubMed ID: 29371250 [TBL] [Abstract][Full Text] [Related]
9. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Sperry JS; Venturas MD; Anderegg WRL; Mencuccini M; Mackay DS; Wang Y; Love DM Plant Cell Environ; 2017 Jun; 40(6):816-830. PubMed ID: 27764894 [TBL] [Abstract][Full Text] [Related]
10. A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source-sink flux. Hölttä T; Lintunen A; Chan T; Mäkelä A; Nikinmaa E Tree Physiol; 2017 Jul; 37(7):851-868. PubMed ID: 28338800 [TBL] [Abstract][Full Text] [Related]
11. What determines the complex kinetics of stomatal conductance under blueless PAR in Festuca arundinacea? Subsequent effects on leaf transpiration. Barillot R; Frak E; Combes D; Durand JL; Escobar-Gutiérrez AJ J Exp Bot; 2010 Jun; 61(10):2795-806. PubMed ID: 20444905 [TBL] [Abstract][Full Text] [Related]
12. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. Dewar R; Mauranen A; Mäkelä A; Hölttä T; Medlyn B; Vesala T New Phytol; 2018 Jan; 217(2):571-585. PubMed ID: 29086921 [TBL] [Abstract][Full Text] [Related]
13. [Suitability of four stomatal conductance models in agro-pastoral ecotone in North China: A case study for potato and oil sunflower.]. Huang MX; Wang J; Tang JZ; Yu Q; Zhang J; Xue QY; Chang Q; Tan MX Ying Yong Sheng Tai Xue Bao; 2016 Nov; 27(11):3585-3592. PubMed ID: 29696856 [TBL] [Abstract][Full Text] [Related]
14. A generalised dynamic model of leaf-level C Bellasio C Photosynth Res; 2019 Jul; 141(1):99-118. PubMed ID: 30471008 [TBL] [Abstract][Full Text] [Related]
15. A Dynamic Hydro-Mechanical and Biochemical Model of Stomatal Conductance for C Bellasio C; Quirk J; Buckley TN; Beerling DJ Plant Physiol; 2017 Sep; 175(1):104-119. PubMed ID: 28751312 [TBL] [Abstract][Full Text] [Related]
16. Genetic variation in circadian regulation of nocturnal stomatal conductance enhances carbon assimilation and growth. Resco de Dios V; Loik ME; Smith R; Aspinwall MJ; Tissue DT Plant Cell Environ; 2016 Jan; 39(1):3-11. PubMed ID: 26147129 [TBL] [Abstract][Full Text] [Related]
17. Scaling up stomatal conductance from leaf to canopy using a dual-leaf model for estimating crop evapotranspiration. Ding R; Kang S; Du T; Hao X; Zhang Y PLoS One; 2014; 9(4):e95584. PubMed ID: 24752329 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of Arabidopsis stomatal development by plastoquinone oxidation. Zoulias N; Rowe J; Thomson EE; Dabrowska M; Sutherland H; Degen GE; Johnson MP; Sedelnikova SE; Hulmes GE; Hettema EH; Casson SA Curr Biol; 2021 Dec; 31(24):5622-5632.e7. PubMed ID: 34727522 [TBL] [Abstract][Full Text] [Related]
19. Steady-state stomatal responses of C Zhen S; Bugbee B Plant Cell Environ; 2020 Dec; 43(12):3020-3032. PubMed ID: 32929764 [TBL] [Abstract][Full Text] [Related]
20. Leaf relative uptake of carbonyl sulfide to CO Sun W; Berry JA; Yakir D; Seibt U New Phytol; 2022 Sep; 235(5):1729-1742. PubMed ID: 35478172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]