BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 30892255)

  • 1. Multi-Sensor Fusion Approach for Cuff-Less Blood Pressure Measurement.
    Miao F; Liu ZD; Liu JK; Wen B; He QY; Li Y
    IEEE J Biomed Health Inform; 2020 Jan; 24(1):79-91. PubMed ID: 30892255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy and User Acceptability of 24-hour Ambulatory Blood Pressure Monitoring by a Prototype Cuffless Multi-Sensor Device Compared to a Conventional Oscillometric Device.
    Heimark S; Hove C; Stepanov A; Boysen ES; Gløersen Ø; Bøtke-Rasmussen KG; Gravdal HJ; Narayanapillai K; Fadl Elmula FEM; Seeberg TM; Larstorp ACK; Waldum-Grevbo B
    Blood Press; 2023 Dec; 32(1):2274595. PubMed ID: 37885101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring.
    Kachuee M; Kiani MM; Mohammadzade H; Shabany M
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):859-869. PubMed ID: 27323356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KD-Informer: A Cuff-Less Continuous Blood Pressure Waveform Estimation Approach Based on Single Photoplethysmography.
    Ma C; Zhang P; Song F; Sun Y; Fan G; Zhang T; Feng Y; Zhang G
    IEEE J Biomed Health Inform; 2023 May; 27(5):2219-2230. PubMed ID: 35700247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Schrödinger spectrum based continuous cuff-less blood pressure estimation using clinically relevant features from PPG signal and its second derivative.
    Sarkar S; Ghosh A
    Comput Biol Med; 2023 Nov; 166():107558. PubMed ID: 37806054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bi-Modal Arterial Compliance Probe for Calibration-Free Cuffless Blood Pressure Estimation.
    P M N; Joseph J; Karthik S; Sivaprakasam M; Chenniappan M
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2392-2404. PubMed ID: 30130174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cuff-less and continuous blood pressure measurement based on pulse transit time from carotid and toe photoplethysmograms.
    Zuhair Sameen A; Jaafar R; Zahedi E; Kok Beng G
    J Med Eng Technol; 2022 Oct; 46(7):567-589. PubMed ID: 35801952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis for the Influence of ABR Sensitivity on PTT-Based Cuff-Less Blood Pressure Estimation before and after Exercise.
    Xu Y; Ping P; Wang D; Zhang W
    J Healthc Eng; 2018; 2018():5396030. PubMed ID: 30402213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristic Ratio-Independent Arterial Stiffness-Based Blood Pressure Estimation.
    Baktash S; Forouzanfar M; Batkin I; Bolic M; Groza VZ; Ahmad S; Dajani HR
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1263-1270. PubMed ID: 27479981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous Blood Pressure Estimation From Electrocardiogram and Photoplethysmogram During Arrhythmias.
    Liu Z; Zhou B; Li Y; Tang M; Miao F
    Front Physiol; 2020; 11():575407. PubMed ID: 33013491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cuff-less Blood Pressure Measurement Using Supplementary ECG and PPG Features Extracted Through Wavelet Transformation.
    Singla M; Sistla P; Azeemuddin S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4628-4631. PubMed ID: 31946895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques.
    Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y
    Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques.
    Miao F; Fu N; Zhang YT; Ding XR; Hong X; He Q; Li Y
    IEEE J Biomed Health Inform; 2017 Nov; 21(6):1730-1740. PubMed ID: 28463207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An armband wearable device for overnight and cuff-less blood pressure measurement.
    Zheng YL; Yan BP; Zhang YT; Poon CC
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):2179-86. PubMed ID: 24760899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coefficient-free blood pressure estimation based on pulse transit time-cuff pressure dependence.
    Forouzanfar M; Ahmad S; Batkin I; Dajani HR; Groza VZ; Bolic M
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1814-24. PubMed ID: 23372068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Ding XR; Zhang YT; Liu J; Dai WX; Tsang HK
    IEEE Trans Biomed Eng; 2016 May; 63(5):964-972. PubMed ID: 26415147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates.
    Feng J; Huang Z; Zhou C; Ye X
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):403-413. PubMed ID: 29633173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.