These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30892295)

  • 21. A simple fluorometric determination of vitamin C.
    Mori K; Kidawara M; Iseki M; Umegaki C; Kishi T
    Chem Pharm Bull (Tokyo); 1998 Sep; 46(9):1474-6. PubMed ID: 9775442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatically validated liquid chromatographic method for the determination of ascorbic and dehydroascorbic acids in fruit and vegetables.
    Gökmen V; Kahraman N; Demir N; Acar J
    J Chromatogr A; 2000 Jun; 881(1-2):309-16. PubMed ID: 10905714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HPLC analysis with fluorometric detection of vitamin C in food samples.
    Vanderslice JT; Higgs DJ
    J Chromatogr Sci; 1984 Nov; 22(11):485-9. PubMed ID: 6501530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dehydroascorbic acid uptake and intracellular ascorbic acid accumulation in cultured Müller glial cells (TR-MUL).
    Hosoya K; Nakamura G; Akanuma S; Tomi M; Tachikawa M
    Neurochem Int; 2008 Jun; 52(7):1351-7. PubMed ID: 18353508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dehydroascorbate transport in human chondrocytes is regulated by hypoxia and is a physiologically relevant source of ascorbic acid in the joint.
    McNulty AL; Stabler TV; Vail TP; McDaniel GE; Kraus VB
    Arthritis Rheum; 2005 Sep; 52(9):2676-85. PubMed ID: 16142743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simple in-line postcolumn oxidation and derivatization for the simultaneous analysis of ascorbic and dehydroascorbic acids in foods.
    Bognár A; Daood HG
    J Chromatogr Sci; 2000 Apr; 38(4):162-8. PubMed ID: 10766483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous determination of ascorbic acid and dehydroascorbic acid in cultures of C3H/10T1/2 cells.
    Ibric LL; Benedict WF; Peterson AR
    In Vitro Cell Dev Biol; 1988 Jul; 24(7):669-76. PubMed ID: 3397368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vitamin C transport in oxidized form across the rat blood-retinal barrier.
    Hosoya K; Minamizono A; Katayama K; Terasaki T; Tomi M
    Invest Ophthalmol Vis Sci; 2004 Apr; 45(4):1232-9. PubMed ID: 15037592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury.
    KC S; Cárcamo JM; Golde DW
    FASEB J; 2005 Oct; 19(12):1657-67. PubMed ID: 16195374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ascorbic acid, but not dehydroascorbic acid increases intracellular vitamin C content to decrease Hypoxia Inducible Factor -1 alpha activity and reduce malignant potential in human melanoma.
    Fischer AP; Miles SL
    Biomed Pharmacother; 2017 Feb; 86():502-513. PubMed ID: 28012930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of total vitamin C in fruits by capillary zone electrophoresis.
    Chiari M; Nesi M; Carrea G; Righetti PG
    J Chromatogr; 1993 Aug; 645(1):197-200. PubMed ID: 8408415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sodium-dependent ascorbic and dehydroascorbic acid uptake by SV-40-transformed retinal pigment epithelial cells.
    Lam KW; Yu HS; Glickman RD; Lin T
    Ophthalmic Res; 1993; 25(2):100-7. PubMed ID: 8391673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resveratrol potentiates intracellular ascorbic acid enrichment through dehydroascorbic acid transport and/or its intracellular reduction in HaCaT cells.
    Saitoh Y; Umezaki T; Yonekura N; Nakawa A
    Mol Cell Biochem; 2020 Apr; 467(1-2):57-64. PubMed ID: 32080778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous determination of ascorbic acid and dehydroascorbic acid in fish tissues by high-performance liquid chromatography.
    Ito T; Murata H; Yasui Y; Matsui M; Sakai T; Yamauchi K
    J Chromatogr B Biomed Appl; 1995 May; 667(2):355-7. PubMed ID: 7663712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies with low micromolar levels of ascorbic and dehydroascorbic acid fail to unravel a preferential route for vitamin C uptake and accumulation in U937 cells.
    Azzolini C; Fiorani M; Guidarelli A; Cantoni O
    Br J Nutr; 2012 Mar; 107(5):691-6. PubMed ID: 21794197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism.
    Parsons HT; Yasmin T; Fry SC
    Biochem J; 2011 Dec; 440(3):375-83. PubMed ID: 21846329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comments on the glutathione-ascorbic acid redox couple.
    Rose RC; Bode AM
    Free Radic Biol Med; 1995 May; 18(5):955-6. PubMed ID: 7797107
    [No Abstract]   [Full Text] [Related]  

  • 38. Low Red Blood Cell Vitamin C Concentrations Induce Red Blood Cell Fragility: A Link to Diabetes Via Glucose, Glucose Transporters, and Dehydroascorbic Acid.
    Tu H; Li H; Wang Y; Niyyati M; Wang Y; Leshin J; Levine M
    EBioMedicine; 2015 Nov; 2(11):1735-50. PubMed ID: 26870799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of ascorbic acid and dehydroascorbic acid in plasma and cerebrospinal fluid by liquid chromatography with electrochemical detection.
    Nagy E; Degrell I
    J Chromatogr; 1989 Dec; 497():276-81. PubMed ID: 2625464
    [No Abstract]   [Full Text] [Related]  

  • 40. Measurement of ascorbic acid and dehydroascorbic acid in gastric juice by HPLC.
    Sanderson MJ; Schorah CJ
    Biomed Chromatogr; 1987; 2(5):197-202. PubMed ID: 3507237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.