These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 30892329)

  • 21. Broadband excitation in solid-state NMR using interleaved DANTE pulse trains with N pulses per rotor period.
    Lu X; Trébosc J; Lafon O; Carnevale D; Ulzega S; Bodenhausen G; Amoureux JP
    J Magn Reson; 2013 Nov; 236():105-16. PubMed ID: 24095842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase control over decaying molecular states in intense laser pulses.
    Pegarkov AI
    J Chem Phys; 2005 Sep; 123(10):104313. PubMed ID: 16178603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlling molecular rotational population by wave-packet interference.
    Wu C; Zeng G; Gao Y; Xu N; Peng LY; Jiang H; Gong Q
    J Chem Phys; 2009 Jun; 130(23):231102. PubMed ID: 19548701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Laser pulse trains for controlling excited state dynamics of adenine in water.
    Petersen J; Wohlgemuth M; Sellner B; Bonačić-Koutecký V; Lischka H; Mitrić R
    Phys Chem Chem Phys; 2012 Apr; 14(14):4687-94. PubMed ID: 22307762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From stochastic pulse optimization to a stereoselective laser pulse sequence: simulation of a chiroptical molecular switch mounted on adamantane.
    Kröner D; Klaumünzer B; Klamroth T
    J Phys Chem A; 2008 Oct; 112(40):9924-35. PubMed ID: 18800773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unified theory of plasmon-induced resonance energy transfer and hot electron injection processes for enhanced photocurrent efficiency.
    You X; Ramakrishna S; Seideman T
    J Chem Phys; 2018 Nov; 149(17):174304. PubMed ID: 30408995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An extremely robust strong-field control of atomic coherence.
    Djotyan GP; Sandor N; Bakos JS; Sörlei Z
    Opt Express; 2011 Aug; 19(18):17493-9. PubMed ID: 21935115
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pulse-train control of branching processes: elimination of background and intruder state population.
    Seidl M; Etinski M; Uiberacker C; Jakubetz W
    J Chem Phys; 2008 Dec; 129(23):234305. PubMed ID: 19102530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unified asymptotic description of Gaussian pulse propagation of arbitrary initial pulse width in a Lorentz-type gain medium.
    Balictsis CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013304. PubMed ID: 23410457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coherent control of molecular alignment of homonuclear diatomic molecules by analytically designed laser pulses.
    Zou S; Sanz C; Balint-Kurti GG
    J Chem Phys; 2008 Sep; 129(12):124307. PubMed ID: 19045023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.
    Eckstein M; Yang CH; Frassetto F; Poletto L; Sansone G; Vrakking MJ; Kornilov O
    Phys Rev Lett; 2016 Apr; 116(16):163003. PubMed ID: 27152799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical shift anisotropic mapping of a coherent optical absorber using magnetic field induced quantum beats.
    Kiruluta AJ
    J Chem Phys; 2006 Jul; 125(2):24509. PubMed ID: 16848594
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal control theory for a target state distributed in time: optimizing the probe-pulse signal of a pump-probe-scheme.
    Kaiser A; May V
    J Chem Phys; 2004 Aug; 121(6):2528-35. PubMed ID: 15281849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interfering resonance as an underlying mechanism in the adaptive feedback control of radiationless transitions: Retinal isomerization.
    Lavigne C; Brumer P
    J Chem Phys; 2017 Sep; 147(11):114107. PubMed ID: 28938828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic control of coherent pulses via destructive interference in graphene under Landau quantization.
    Yang WX; Chen AX; Xie XT; Liu S; Liu S
    Sci Rep; 2017 May; 7(1):2513. PubMed ID: 28566742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Storage and recall of weak coherent optical pulses with an efficiency of 25%.
    Sabooni M; Beaudoin F; Walther A; Lin N; Amari A; Huang M; Kröll S
    Phys Rev Lett; 2010 Aug; 105(6):060501. PubMed ID: 20867963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Lack of Resonance Problem in Coherent Control with Real-Time Time-Dependent Density Functional Theory.
    Raghunathan S; Nest M
    J Chem Theory Comput; 2012 Mar; 8(3):806-9. PubMed ID: 26593342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analytical control of molecular excitations including strong field polarization effects.
    Zou S; Ren Q; Balint-Kurti GG; Manby FR
    Phys Rev Lett; 2006 Jun; 96(24):243003. PubMed ID: 16907235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Pulse Shaping on Observing Coherent Energy Transfer in Single Light-Harvesting Complexes.
    Song K; Bai S; Shi Q
    J Phys Chem B; 2016 Nov; 120(45):11637-11643. PubMed ID: 27749066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pulse-train control of photofragmentation at constant field energy.
    Tiwari AK; Henriksen NE
    J Chem Phys; 2014 Nov; 141(20):204301. PubMed ID: 25429936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.