These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30892390)

  • 41. Effects of chronic nerve cuff and intramuscular electrodes on rat triceps surae motor units.
    Carp JS; Chen XY; Sheikh H; Wolpaw JR
    Neurosci Lett; 2001 Oct; 312(1):1-4. PubMed ID: 11578831
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interexaminer variance of median nerve compound muscle action potential measurements in hand position with and without fixation in plaster.
    Higuchi K; Narita Y; Kuzuhara S
    J Clin Neuromuscul Dis; 2008 Dec; 10(2):37-41. PubMed ID: 19169088
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mapping of the human upper arm muscle activity with an electrode matrix.
    Côté J; Mathieu PA
    Electromyogr Clin Neurophysiol; 2000 Jun; 40(4):215-23. PubMed ID: 10907599
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Normal motor nerve conduction studies using surface electrode recording from the supraspinatus, infraspinatus, deltoid, and biceps.
    Buschbacher RM; Weir SK; Bentley JG; Cottrell E
    PM R; 2009 Feb; 1(2):101-6. PubMed ID: 19627883
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of concentric needle versus hooked-wire electrodes in the canine larynx.
    Jaffe DM; Solomon NP; Robinson RA; Hoffman HT; Luschei ES
    Otolaryngol Head Neck Surg; 1998 May; 118(5):655-62. PubMed ID: 9591865
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Muscle velocity recovery cycles: Comparison between surface and needle recordings.
    Z'graggen WJ; Trautmann JP; Boërio D; Bostock H
    Muscle Nerve; 2016 Feb; 53(2):205-8. PubMed ID: 26044702
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On the suitability of using surface electrode placements to estimate muscle activity of the rotator cuff as recorded by intramuscular electrodes.
    Waite DL; Brookham RL; Dickerson CR
    J Electromyogr Kinesiol; 2010 Oct; 20(5):903-11. PubMed ID: 19932033
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nerve conduction studies: orthodromic vs antidromic latencies.
    Cohn TG; Wertsch JJ; Pasupuleti DV; Loftsgaarden JD; Schenk VA
    Arch Phys Med Rehabil; 1990 Jul; 71(8):579-82. PubMed ID: 2369294
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Amplitude, area and duration of the compound muscle action potential change in different ways over the length of the ulnar nerve.
    Johnsen B; Fuglsang-Frederiksen A; de Carvalho M; Labarre-Vila A; Nix W; Schofield I
    Clin Neurophysiol; 2006 Sep; 117(9):2085-92. PubMed ID: 16876477
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reference values for peroneal nerve motor conduction to the tibialis anterior and for peroneal vs. tibial latencies.
    Buschbacher RM
    Am J Phys Med Rehabil; 2003 Apr; 82(4):296-301. PubMed ID: 12649656
    [TBL] [Abstract][Full Text] [Related]  

  • 51. EMG power spectrum and motor unit characteristics in the masseter muscle of the rabbit.
    Turkawski SJ; van Eijden TM
    J Dent Res; 2000 Apr; 79(4):950-6. PubMed ID: 10831097
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ankle position and voluntary contraction alter maximal M waves in soleus and tibialis anterior.
    Frigon A; Carroll TJ; Jones KE; Zehr EP; Collins DF
    Muscle Nerve; 2007 Jun; 35(6):756-66. PubMed ID: 17295303
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nerve conduction studies in lower limb of elite Nepalese football players: an insight into neural adaptations.
    Sharma D; Paudel BH; Khadka R; Thakur D; Shah DK; Sapkota NK; Yadav RL; Yadav PK
    J Sports Med Phys Fitness; 2017 Mar; 57(3):313-318. PubMed ID: 26842865
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Can forearm muscle activity be selectively recorded using conventional surface EMG-electrodes in transcranial magnetic stimulation? A feasibility study.
    Bakker CD; van Kuijk AA; Geurts AC; Stegeman DF; Pasman JW
    J Electromyogr Kinesiol; 2014 Jun; 24(3):325-31. PubMed ID: 24690165
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigation of optimum electrode locations by using an automatized surface electromyography analysis technique.
    Nishihara K; Kawai H; Gomi T; Terajima M; Chiba Y
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):636-42. PubMed ID: 18269999
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recording characteristics of monopolar EMG electrodes.
    Nandedkar SD; Sanders DB
    Muscle Nerve; 1991 Feb; 14(2):108-12. PubMed ID: 2000101
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electromyographic study of the longissimus dorsi and iliocostalis lumborum muscles during knee flexion and extension on a plain and on a tilt Roman table.
    Masselli MR; de Camargo AM; Bérzin F
    Electromyogr Clin Neurophysiol; 1994; 34(5):309-14. PubMed ID: 7956882
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On the evaluation of muscle fiber conduction velocity considering waveform properties of an electromyogram in M. biceps brachii during voluntary isometric contraction.
    Mito K; Sakamoto K
    Electromyogr Clin Neurophysiol; 2002; 42(3):137-49. PubMed ID: 11977427
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effects of parallel versus perpendicular electrode orientations on EMG amplitude and mean power frequency from the biceps brachii.
    Zuniga J; Housh TJ; Camic CL; Hendrix CR; Mielke M; Schmidt RJ; Johnson GO
    Electromyogr Clin Neurophysiol; 2010 Mar; 50(2):87-96. PubMed ID: 20405784
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The relationship between preoperative needle electromyography findings and muscle power restoration after surgery in severe carpal tunnel syndrome patients.
    Hara Y; Nishiura Y; Ochiai N; Murai S; Yamazaki M
    J Orthop Sci; 2017 May; 22(3):430-433. PubMed ID: 28325700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.