These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 30892783)

  • 1. Aminal Protection of Epoxide Monomer Permits the Introduction of Multiple Secondary Amine Moieties at Poly(ethylene glycol).
    Blankenburg J; Frey H
    Macromol Rapid Commun; 2019 Jun; 40(12):e1900057. PubMed ID: 30892783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional Fe(III)-Binding Polyethers from Hydroxamic Acid-Based Epoxide Monomers.
    Johann T; Kemmer-Jonas U; Barent RD; Frey H
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900282. PubMed ID: 31353671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convenient Access to α-Amino-ω-Hydroxyl Heterobifunctional PEG and PPO via a Sacrificial Hexahydro-Triazine Star Strategy.
    Blankenburg J; Frey H
    Macromol Rapid Commun; 2019 May; 40(9):e1900020. PubMed ID: 30821874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-Chain Alkyl Epoxides and Glycidyl Ethers: An Underrated Class of Monomers.
    Verkoyen P; Frey H
    Macromol Rapid Commun; 2020 Aug; 41(15):e2000225. PubMed ID: 32567153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled ring-opening polymerization of substituted episulfides for side-chain functional polysulfide-based amphiphiles.
    Kuhlmann M; Singh S; Groll J
    Macromol Rapid Commun; 2012 Sep; 33(17):1482-6. PubMed ID: 22833423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetal-Based Functional Epoxide Monomers: Polymerizations and Applications.
    Baek J; Kim M; Park Y; Kim BS
    Macromol Biosci; 2021 Nov; 21(11):e2100251. PubMed ID: 34369084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Branched Acid-Degradable, Biocompatible Polyether Copolymers via Anionic Ring-Opening Polymerization Using an Epoxide Inimer.
    Tonhauser C; Schüll C; Dingels C; Frey H
    ACS Macro Lett; 2012 Sep; 1(9):1094-1097. PubMed ID: 35607173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoresponsive copolymers of ethylene oxide and N,N-diethyl glycidyl amine: polyether polyelectrolytes and PEGylated gold nanoparticle formation.
    Reuss VS; Werre M; Frey H
    Macromol Rapid Commun; 2012 Sep; 33(18):1556-61. PubMed ID: 22730285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Dumb" pH-Independent and Biocompatible Hydrogels Formed by Copolymers of Long-Chain Alkyl Glycidyl Ethers and Ethylene Oxide.
    Verkoyen P; Dreier P; Bros M; Hils C; Schmalz H; Seiffert S; Frey H
    Biomacromolecules; 2020 Aug; 21(8):3152-3162. PubMed ID: 32603096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catechol-initiated polyethers: multifunctional hydrophilic ligands for PEGylation and functionalization of metal oxide nanoparticles.
    Wilms VS; Bauer H; Tonhauser C; Schilmann AM; Müller MC; Tremel W; Frey H
    Biomacromolecules; 2013 Jan; 14(1):193-9. PubMed ID: 23210706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal concept for the implementation of a single cleavable unit at tunable position in functional poly(ethylene glycol)s.
    Dingels C; Müller SS; Steinbach T; Tonhauser C; Frey H
    Biomacromolecules; 2013 Feb; 14(2):448-59. PubMed ID: 23256621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymers: Degradable Poloxamer Analogs.
    Worm M; Kang B; Dingels C; Wurm FR; Frey H
    Macromol Rapid Commun; 2016 May; 37(9):775-80. PubMed ID: 27000789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From an epoxide monomer toolkit to functional PEG copolymers with adjustable LCST behavior.
    Mangold C; Obermeier B; Wurm F; Frey H
    Macromol Rapid Commun; 2011 Dec; 32(23):1930-4. PubMed ID: 21971715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(ethylene glycol-co-allyl glycidyl ether)s: a PEG-based modular synthetic platform for multiple bioconjugation.
    Obermeier B; Frey H
    Bioconjug Chem; 2011 Mar; 22(3):436-44. PubMed ID: 21319753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Degradable Poly[(Ethylene Glycol)-co-(Glycolic Acid)] via the Post-Polymerization Oxyfunctionalization of Poly(Ethylene Glycol).
    Liu D; Bielawski CW
    Macromol Rapid Commun; 2016 Oct; 37(19):1587-1592. PubMed ID: 27461401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. (1-Adamantyl)methyl glycidyl ether: a versatile building block for living polymerization.
    Moers C; Wrazidlo R; Natalello A; Netz I; Mondeshki M; Frey H
    Macromol Rapid Commun; 2014 Jun; 35(11):1075-80. PubMed ID: 24677644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atom transfer radical polymerization to fabricate monodisperse poly[glycidyl methacrylate-co-poly (ethylene glycol) methacrylate] microspheres and its application for protein affinity purification.
    Yu L; Shi ZZ; Li CM
    J Colloid Interface Sci; 2015 Sep; 453():151-158. PubMed ID: 25982938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of poly(poly(ethylene glycol) methacrylate)-polyisobutylene ABA block copolymers by the combination of quasiliving carbocationic and atom transfer radical polymerizations.
    Szabó Á; Szarka G; Iván B
    Macromol Rapid Commun; 2015 Jan; 36(2):238-48. PubMed ID: 25353143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation-Responsive and "Clickable" Poly(ethylene glycol) via Copolymerization of 2-(Methylthio)ethyl Glycidyl Ether.
    Herzberger J; Fischer K; Leibig D; Bros M; Thiermann R; Frey H
    J Am Chem Soc; 2016 Jul; 138(29):9212-23. PubMed ID: 27375132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyethers Based on Short-Chain Alkyl Glycidyl Ethers: Thermoresponsive and Highly Biocompatible Materials.
    Matthes R; Frey H
    Biomacromolecules; 2022 Jun; 23(6):2219-2235. PubMed ID: 35622963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.