BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 3089281)

  • 1. Kinetic, equilibrium and spectroscopic studies on cation association at the active center of acetylcholinesterase: topographic distinction between trimethyl and trimethylammonium sites.
    Berman HA; Decker MM
    Biochim Biophys Acta; 1986 Jul; 872(1-2):125-33. PubMed ID: 3089281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site selectivity of fluorescent bisquaternary phenanthridinium ligands for acetylcholinesterase.
    Berman HA; Decker MM; Nowak MW; Leonard KJ; McCauley M; Baker WM; Taylor P
    Mol Pharmacol; 1987 Jun; 31(6):610-6. PubMed ID: 3600605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic, equilibrium, and spectroscopic studies on dealkylation ("aging") of alkyl organophosphonyl acetylcholinesterase. Electrostatic control of enzyme topography.
    Berman HA; Decker MM
    J Biol Chem; 1986 Aug; 261(23):10646-52. PubMed ID: 3733723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium binding.
    Taylor P; Lappi S
    Biochemistry; 1975 May; 14(9):1989-97. PubMed ID: 1125207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent phosphonate labels for serine hydrolases. Kinetic and spectroscopic properties of (7-nitrobenz-2-oxa-1,3-diazole)aminoalkyl methylphosphonofluoridates and their conjugates with acetylcholinesterase molecular forms.
    Berman HA; Olshefski DF; Gilbert M; Decker MM
    J Biol Chem; 1985 Mar; 260(6):3462-8. PubMed ID: 3972833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase.
    Harel M; Schalk I; Ehret-Sabatier L; Bouet F; Goeldner M; Hirth C; Axelsen PH; Silman I; Sussman JL
    Proc Natl Acad Sci U S A; 1993 Oct; 90(19):9031-5. PubMed ID: 8415649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral nature of covalent methylphosphonyl conjugates of acetylcholinesterase.
    Berman HA; Decker MM
    J Biol Chem; 1989 Mar; 264(7):3951-6. PubMed ID: 2917984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Accelerating effect of heterocyclic quaternary ammonium salts on neutral ester hydrolysis by acetylcholinesterase and butyrylcholinesterase (author's transl)].
    Desire B; Saint-Andre S
    Biochim Biophys Acta; 1981 Jun; 659(2):267-82. PubMed ID: 7260096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of ligand and inhibitor interactions with acetylcholinesterase.
    Das YT; Brown HD; Chattopadhyay SK
    Biochem Cell Biol; 1987 Sep; 65(9):798-802. PubMed ID: 3440086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand exclusion on acetylcholinesterase.
    Berman HA; Leonard K
    Biochemistry; 1990 Nov; 29(47):10640-9. PubMed ID: 2271673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathways of ligand clearance in acetylcholinesterase by multiple copy sampling.
    Van Belle D; De Maria L; Iurcu G; Wodak SJ
    J Mol Biol; 2000 May; 298(4):705-26. PubMed ID: 10788331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of oxime reactivators with diethylphosphoryl adducts of human acetylcholinesterase and its mutant derivatives.
    Grosfeld H; Barak D; Ordentlich A; Velan B; Shafferman A
    Mol Pharmacol; 1996 Sep; 50(3):639-49. PubMed ID: 8794905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acceleration of oxime-induced reactivation of organophosphate-inhibited fetal bovine serum acetylcholinesterase by monoquaternary and bisquaternary ligands.
    Luo C; Ashani Y; Doctor BP
    Mol Pharmacol; 1998 Apr; 53(4):718-26. PubMed ID: 9547363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of "peripheral" site ligands on Torpedo and chicken acetylcholinesterase.
    Eichler J; Anselment A; Sussman JL; Massoulié J; Silman I
    Mol Pharmacol; 1994 Feb; 45(2):335-40. PubMed ID: 8114681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformers of acetylcholinesterase: a mechanism of allosteric control.
    Taylor JL; Mayer RT; Himel CM
    Mol Pharmacol; 1994 Jan; 45(1):74-83. PubMed ID: 8302283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Acetylcholinesterase. II. Experimental aspects of interaction with reversible effectors under conditions of high ionic strength].
    Désiré B; Blanchet G; Definod G; Arnaud R
    Biochimie; 1975; 57(11-12):1359-70. PubMed ID: 4154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of the neurotoxin fasciculin 2 to the acetylcholinesterase peripheral site drastically reduces the association and dissociation rate constants for N-methylacridinium binding to the active site.
    Rosenberry TL; Rabl CR; Neumann E
    Biochemistry; 1996 Jan; 35(3):685-90. PubMed ID: 8547248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands.
    Nolte HJ; Rosenberry TL; Neumann E
    Biochemistry; 1980 Aug; 19(16):3705-11. PubMed ID: 7407068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cationic and uncharged substrates and reversible inhibitors in hydrolysis by acetylcholinesterase (EC 3.1.1.7). The trimethyl subsite.
    Hasan FB; Elkind JL; Cohen SG; Cohen JB
    J Biol Chem; 1981 Aug; 256(15):7781-5. PubMed ID: 7263627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The isolation of endogenous modulators of the affinity of acetylcholinesterase to cholinergic ligands.
    Hollunger EG; Niklasson BH
    Acta Physiol Scand; 1981 Mar; 111(3):335-41. PubMed ID: 7315401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.