BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 30892873)

  • 1. A Method for Redox Mapping by Confocal Micro-X-ray Fluorescence Imaging: Using Chromium Species in a Biochar Particle as an Example.
    Liu P; Ptacek CJ; Blowes DW; Finfrock YZ; Steinepreis M; Budimir F
    Anal Chem; 2019 Apr; 91(8):5142-5149. PubMed ID: 30892873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of chromium species and distribution during Cr(VI) removal by biochar using confocal micro-X-ray fluorescence redox mapping and X-ray absorption spectroscopy.
    Liu P; Ptacek CJ; Blowes DW; Finfrock YZ; Liu Y
    Environ Int; 2020 Jan; 134():105216. PubMed ID: 31677596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal mechanisms of aqueous Cr(VI) using apple wood biochar: a spectroscopic study.
    Liu N; Zhang Y; Xu C; Liu P; Lv J; Liu Y; Wang Q
    J Hazard Mater; 2020 Feb; 384():121371. PubMed ID: 31610344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution and speciation of iron in Fe-modified biochars and its application in removal of As(V), As(III), Cr(VI), and Hg(II): An X-ray absorption study.
    Feng Y; Liu P; Wang Y; Finfrock YZ; Xie X; Su C; Liu N; Yang Y; Xu Y
    J Hazard Mater; 2020 Feb; 384():121342. PubMed ID: 31610349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. As(III) and As(V) removal mechanisms by Fe-modified biochar characterized using synchrotron-based X-ray absorption spectroscopy and confocal micro-X-ray fluorescence imaging.
    Xu Y; Xie X; Feng Y; Ashraf MA; Liu Y; Su C; Qian K; Liu P
    Bioresour Technol; 2020 May; 304():122978. PubMed ID: 32066094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of hexavalent chromium in aqueous solutions using biochar: Chemical and spectroscopic investigations.
    Rajapaksha AU; Alam MS; Chen N; Alessi DS; Igalavithana AD; Tsang DCW; Ok YS
    Sci Total Environ; 2018 Jun; 625():1567-1573. PubMed ID: 29996453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of hexavalent chromium upon interaction with biochar under acidic conditions: mechanistic insights and application.
    Choudhary B; Paul D; Singh A; Gupta T
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16786-16797. PubMed ID: 28567678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury distribution and speciation in biochar particles reacted with contaminated sediment up to 1030 days: A synchrotron-based study.
    Liu P; Ptacek CJ; Blowes DW; Finfrock YZ
    Sci Total Environ; 2019 Apr; 662():915-922. PubMed ID: 30708306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray absorption near edge structure and extended X-ray absorption fine structure analysis of standards and biological samples containing mixed oxidation states of chromium(III) and chromium(VI).
    Parsons JG; Dokken K; Peralta-Videa JR; Romero-Gonzalez J; Gardea-Torresdey JL
    Appl Spectrosc; 2007 Mar; 61(3):338-45. PubMed ID: 17389076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cr(VI) adsorption and reduction by humic acid coated on magnetite.
    Jiang W; Cai Q; Xu W; Yang M; Cai Y; Dionysiou DD; O'Shea KE
    Environ Sci Technol; 2014 Jul; 48(14):8078-85. PubMed ID: 24901955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Cr (VI) - Containing solid phase particles in dry dust deposition in Daejeon, South Korea.
    Lee PK; Chang HJ; Yu S; Chae KH; Bae JH; Kang MJ; Chae G
    Environ Pollut; 2018 Dec; 243(Pt B):1637-1647. PubMed ID: 30296760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromium Speciation in the Size-Fractions of a Soil Polluted by Weathered Chromate Ore Process Residue Using Synchrotron X-ray Analysis.
    Zhang H; Zhou B; Ren J; Zhang L; Luo Y
    Bull Environ Contam Toxicol; 2019 Jul; 103(1):3-9. PubMed ID: 30022345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer.
    Huang XY; Ling L; Zhang WX
    J Environ Sci (China); 2018 May; 67():4-13. PubMed ID: 29778172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles.
    Wu P; Li S; Ju L; Zhu N; Wu J; Li P; Dang Z
    J Hazard Mater; 2012 Jun; 219-220():283-8. PubMed ID: 22521796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water.
    Zhang S; Lyu H; Tang J; Song B; Zhen M; Liu X
    Chemosphere; 2019 Feb; 217():686-694. PubMed ID: 30448748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox reactions between chromium(VI) and hydroquinone: Alternative pathways for polymerization of organic molecules.
    Tzou YM; Chen KY; Cheng CY; Lee WZ; Teah HY; Liu YT
    Environ Pollut; 2020 Jun; 261():114024. PubMed ID: 32045790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of analytical procedures for the determination of hexavalent chromium in corrosion prevention coatings used in the automotive industry.
    Séby F; Castetbon A; Ortega R; Guimon C; Niveau F; Barrois-Oudin N; Garraud H; Donard OF
    Anal Bioanal Chem; 2008 May; 391(2):587-97. PubMed ID: 18404261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coadsorption and subsequent redox conversion behaviors of As(III) and Cr(VI) on Al-containing ferrihydrite.
    Ding Z; Fu F; Dionysiou DD; Tang B
    Environ Pollut; 2018 Apr; 235():660-669. PubMed ID: 29331898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite.
    Lyu H; Zhao H; Tang J; Gong Y; Huang Y; Wu Q; Gao B
    Chemosphere; 2018 Mar; 194():360-369. PubMed ID: 29223115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-coated montmorillonite nanocomposite for the removal of chromium(VI) from aqueous solutions.
    Wei J; Tu C; Yuan G; Bi D; Xiao L; Theng BKG; Wang H; Ok YS
    J Hazard Mater; 2019 Apr; 368():541-549. PubMed ID: 30710783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.