These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 30893308)

  • 21. Associations Between Heart Rate Variability Measured With a Wrist-Worn Sensor and Older Adults' Physical Function: Observational Study.
    Graham SA; Jeste DV; Lee EE; Wu TC; Tu X; Kim HC; Depp CA
    JMIR Mhealth Uhealth; 2019 Oct; 7(10):e13757. PubMed ID: 31647469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
    Ellis K; Kerr J; Godbole S; Staudenmayer J; Lanckriet G
    Med Sci Sports Exerc; 2016 May; 48(5):933-40. PubMed ID: 26673126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulated activities of daily living do not replicate functional upper limb movement or reduce movement variability.
    Taylor SAF; Kedgley AE; Humphries A; Shaheen AF
    J Biomech; 2018 Jul; 76():119-128. PubMed ID: 29908656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recognizing Manual Activities Using Wearable Inertial Measurement Units: Clinical Application for Outcome Measurement.
    El Khoury G; Penta M; Barbier O; Libouton X; Thonnard JL; Lefèvre P
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34067190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of Physical Activity in Adults Using Wrist Accelerometers.
    Liu F; Wanigatunga AA; Schrack JA
    Epidemiol Rev; 2022 Jan; 43(1):65-93. PubMed ID: 34215874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of sampling rate on acceleration and counts of hip- and wrist-worn ActiGraph accelerometers in children.
    Clevenger KA; Pfeiffer KA; Mackintosh KA; McNarry MA; Brønd J; Arvidsson D; Montoye AHK
    Physiol Meas; 2019 Sep; 40(9):095008. PubMed ID: 31518999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Concurrent Validity of Different Sensor-Based Measures: Activity Counts Do Not Reflect Functional Hand Use in Children and Adolescents With Upper Limb Impairments.
    Rast FM; Labruyère R
    Arch Phys Med Rehabil; 2022 Oct; 103(10):1967-1974. PubMed ID: 35439522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparability and feasibility of wrist- and hip-worn accelerometers in free-living adolescents.
    Scott JJ; Rowlands AV; Cliff DP; Morgan PJ; Plotnikoff RC; Lubans DR
    J Sci Med Sport; 2017 Dec; 20(12):1101-1106. PubMed ID: 28501418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic Recognition of Activities of Daily Living Utilizing Insole-Based and Wrist-Worn Wearable Sensors.
    Hegde N; Bries M; Swibas T; Melanson E; Sazonov E; Hegde N; Bries M; Swibas T; Melanson E; Sazonov E
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):979-988. PubMed ID: 28783651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of physical activity assessed using hip- and wrist-worn accelerometers.
    Kamada M; Shiroma EJ; Harris TB; Lee IM
    Gait Posture; 2016 Feb; 44():23-8. PubMed ID: 27004628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comprehensive scheme for the objective upper body assessments of subjects with cerebellar ataxia.
    Tran H; Nguyen KD; Pathirana PN; Horne MK; Power L; Szmulewicz DJ
    J Neuroeng Rehabil; 2020 Dec; 17(1):162. PubMed ID: 33276783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clip-On IMU System for Assessing Age-Related Changes in Hand Functions.
    Lee S; Lee H; Lee J; Ryu H; Kim IY; Kim J
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Daily physical activity assessment: what is the importance of upper limb movements vs whole body movements?
    Kumahara H; Tanaka H; Schutz Y
    Int J Obes Relat Metab Disord; 2004 Sep; 28(9):1105-10. PubMed ID: 15211366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How Accurately Can Your Wrist Device Recognize Daily Activities and Detect Falls?
    Gjoreski M; Gjoreski H; Luštrek M; Gams M
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27258282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cortical decoding of individual finger and wrist kinematics for an upper-limb neuroprosthesis.
    Aggarwal V; Tenore F; Acharya S; Schieber MH; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4535-8. PubMed ID: 19964645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring the feasibility and use of accelerometers before, during, and after a camp-based CIMT program for children with cerebral palsy.
    Coker-Bolt P; Downey RJ; Connolly J; Hoover R; Shelton D; Seo NJ
    J Pediatr Rehabil Med; 2017; 10(1):27-36. PubMed ID: 28339408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards the Ambulatory Assessment of Movement Quality in Stroke Survivors using a Wrist-worn Inertial Sensor.
    Lee SI; Jung HT; Park J; Jeong J; Ryu T; Kim Y; Santos VSD; Miranda JGV; Daneault JF
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2825-2828. PubMed ID: 30440989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison Between Wrist-Worn and Waist-Worn Accelerometry.
    Loprinzi PD; Smith B
    J Phys Act Health; 2017 Jul; 14(7):539-545. PubMed ID: 28290761
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Incorporating the length-dependent passive-force generating muscle properties of the extrinsic finger muscles into a wrist and finger biomechanical musculoskeletal model.
    Binder-Markey BI; Murray WM
    J Biomech; 2017 Aug; 61():250-257. PubMed ID: 28774467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.