BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 30893872)

  • 1. Structure Based Design and Molecular Docking Studies for Phosphorylated Tau Inhibitors in Alzheimer's Disease.
    Pradeepkiran JA; Reddy PH
    Cells; 2019 Mar; 8(3):. PubMed ID: 30893872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protective effects of a small molecule inhibitor ligand against hyperphosphorylated tau-induced mitochondrial and synaptic toxicities in Alzheimer disease.
    Pradeepkiran JA; Munikumar M; Reddy AP; Reddy PH
    Hum Mol Genet; 2021 Dec; 31(2):244-261. PubMed ID: 34432046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of human tau 3D structure, and interplay between O-β-GlcNAc and phosphorylation modifications in Alzheimer's disease: C. elegans as a suitable model to study these interactions in vivo.
    Ahmad W; Shabbiri K; Ahmad I
    Biochem Biophys Res Commun; 2020 Jul; 528(3):466-472. PubMed ID: 32499112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacophore-based models for therapeutic drugs against phosphorylated tau in Alzheimer's disease.
    Pradeepkiran JA; Reddy AP; Reddy PH
    Drug Discov Today; 2019 Feb; 24(2):616-623. PubMed ID: 30453058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments.
    Alonso A; Zaidi T; Novak M; Grundke-Iqbal I; Iqbal K
    Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6923-8. PubMed ID: 11381127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacophore-based virtual screening of catechol-o-methyltransferase (COMT) inhibitors to combat Alzheimer's disease.
    Patel CN; Georrge JJ; Modi KM; Narechania MB; Patel DP; Gonzalez FJ; Pandya HA
    J Biomol Struct Dyn; 2018 Nov; 36(15):3938-3957. PubMed ID: 29281938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tau therapeutic strategies for the treatment of Alzheimer's disease.
    Churcher I
    Curr Top Med Chem; 2006; 6(6):579-95. PubMed ID: 16712493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer's disease.
    Huang HC; Jiang ZF
    J Alzheimers Dis; 2009; 16(1):15-27. PubMed ID: 19158417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular hairpin: a possible model for inhibition of tau aggregation by tannic acid.
    Yao J; Gao X; Sun W; Yao T; Shi S; Ji L
    Biochemistry; 2013 Mar; 52(11):1893-902. PubMed ID: 23442089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of a novel chemotype as DYRK1A inhibitors against Alzheimer's disease: Computational modeling and biological evaluation.
    Qiu N; Qian C; Guo T; Wang Y; Jin H; Yao M; Li M; Guo T; Lv Y; Si X; Wu S; Wang H; Zhang X; Xia J
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):132024. PubMed ID: 38704072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of potential PKC inhibitors through pharmacophore designing, 3D-QSAR and molecular dynamics simulations targeting Alzheimer's disease.
    Iqbal S; Anantha Krishnan D; Gunasekaran K
    J Biomol Struct Dyn; 2018 Nov; 36(15):4029-4044. PubMed ID: 29182053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration.
    Wang JZ; Grundke-Iqbal I; Iqbal K
    Eur J Neurosci; 2007 Jan; 25(1):59-68. PubMed ID: 17241267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the Relationship Between Metalloprotease-9 and Tau Protein in Alzheimer's Disease.
    Hernandes-Alejandro M; Montaño S; Harrington CR; Wischik CM; Salas-Casas A; Cortes-Reynosa P; Pérez Salazar E; Cazares-Apatiga J; Apatiga-Perez R; Ontiveros Torres MÁ; Perry G; Pacheco-Herrero M; Luna-Muñoz J
    J Alzheimers Dis; 2020; 76(2):553-569. PubMed ID: 32538846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual screening, pharmacokinetics, molecular dynamics and binding free energy analysis for small natural molecules against cyclin-dependent kinase 5 for Alzheimer's disease.
    Shukla R; Singh TR
    J Biomol Struct Dyn; 2020 Jan; 38(1):248-262. PubMed ID: 30688165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional implications of tau hyperphosphorylation: information from phosphorylation-mimicking mutated tau proteins.
    Eidenmüller J; Fath T; Hellwig A; Reed J; Sontag E; Brandt R
    Biochemistry; 2000 Oct; 39(43):13166-75. PubMed ID: 11052669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer's disease and tauopathies.
    Ferrer I; Gomez-Isla T; Puig B; Freixes M; Ribé E; Dalfó E; Avila J
    Curr Alzheimer Res; 2005 Jan; 2(1):3-18. PubMed ID: 15977985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure- and ligand-based drug design of novel p38-alpha MAPK inhibitors in the fight against the Alzheimer's disease.
    Pinsetta FR; Taft CA; de Paula da Silva CH
    J Biomol Struct Dyn; 2014; 32(7):1047-63. PubMed ID: 23805842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tau phosphorylation, molecular chaperones, and ubiquitin E3 ligase: clinical relevance in Alzheimer's disease.
    Kumar P; Jha NK; Jha SK; Ramani K; Ambasta RK
    J Alzheimers Dis; 2015; 43(2):341-61. PubMed ID: 25096626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecules of the quinoline family block tau self-aggregation: implications toward a therapeutic approach for Alzheimer's disease.
    Navarrete LP; Guzmán L; San Martín A; Astudillo-Saavedra L; Maccioni RB
    J Alzheimers Dis; 2012; 29(1):79-88. PubMed ID: 22232002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel drugs affecting tau behavior in the treatment of Alzheimer's disease and tauopathies.
    Navarrete LP; Pérez P; Morales I; Maccioni RB
    Curr Alzheimer Res; 2011 Sep; 8(6):678-85. PubMed ID: 21605038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.