These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30893892)

  • 1. Exploration of Computational Approaches to Predict the Toxicity of Chemical Mixtures.
    Kar S; Leszczynski J
    Toxics; 2019 Mar; 7(1):. PubMed ID: 30893892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Modeling of Mixture Toxicity.
    Chatterjee M; Roy K
    Methods Mol Biol; 2022; 2425():561-587. PubMed ID: 35188647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new effect residual ratio (ERR) method for the validation of the concentration addition and independent action models.
    Wang LJ; Liu SS; Zhang J; Li WY
    Environ Sci Pollut Res Int; 2010 Jun; 17(5):1080-9. PubMed ID: 19949878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixture toxicity and its modeling by quantitative structure-activity relationships.
    Altenburger R; Nendza M; Schüürmann G
    Environ Toxicol Chem; 2003 Aug; 22(8):1900-15. PubMed ID: 12924589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A framework for ecological risk assessment of metal mixtures in aquatic systems.
    Nys C; Van Regenmortel T; Janssen CR; Oorts K; Smolders E; De Schamphelaere KAC
    Environ Toxicol Chem; 2018 Mar; 37(3):623-642. PubMed ID: 29135043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of aquatic toxicity of chemical mixtures by the QSAR approach using 2D structural descriptors.
    Chatterjee M; Roy K
    J Hazard Mater; 2021 Apr; 408():124936. PubMed ID: 33387719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive in silico models for aquatic toxicity of cosmetic and personal care additive mixtures.
    Yang YT; Ni HG
    Water Res; 2023 Jun; 236():119981. PubMed ID: 37084578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing Combined Effects for Mixtures of Similar and Dissimilar Acting Neuroactive Substances on Zebrafish Embryo Movement.
    Ogungbemi AO; Massei R; Altenburger R; Scholz S; Küster E
    Toxics; 2021 May; 9(5):. PubMed ID: 34066629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ten years of research on synergisms and antagonisms in chemical mixtures: A systematic review and quantitative reappraisal of mixture studies.
    Martin O; Scholze M; Ermler S; McPhie J; Bopp SK; Kienzler A; Parissis N; Kortenkamp A
    Environ Int; 2021 Jan; 146():106206. PubMed ID: 33120228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical review and analysis of literature on low dose exposure to chemical mixtures in mammalian
    Elcombe CS; Evans NP; Bellingham M
    Crit Rev Toxicol; 2022 Mar; 52(3):221-238. PubMed ID: 35894754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of acute toxicity of chemicals in mixtures: worms Tubifex tubifex and gas/liquid distribution.
    Tichý M; Borek-Dohalský V; Matousová D; Rucki M; Feltl L; Roth Z
    SAR QSAR Environ Res; 2002 Mar; 13(2):261-9. PubMed ID: 12071654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining occurrence and toxicity information to identify priorities for drinking-water mixture research.
    Ryker SJ; Small MJ
    Risk Anal; 2008 Jun; 28(3):653-66. PubMed ID: 18643823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the chronic non-cancer effects of mixtures of migrants using Cramer classes and quantitative models of uncertainty.
    Price P; Wiltshire G
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Dec; 26(12):1547-55. PubMed ID: 19927247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application and validation of approaches for the predictive hazard assessment of realistic pesticide mixtures.
    Junghans M; Backhaus T; Faust M; Scholze M; Grimme LH
    Aquat Toxicol; 2006 Feb; 76(2):93-110. PubMed ID: 16310872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approach for assessing human exposures to chemical mixtures in the environment.
    Rice G; MacDonell M; Hertzberg RC; Teuschler L; Picel K; Butler J; Chang YS; Hartmann H
    Toxicol Appl Pharmacol; 2008 Nov; 233(1):126-36. PubMed ID: 18589469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature and prevalence of non-additive toxic effects in industrially relevant mixtures of organic chemicals.
    Parvez S; Venkataraman C; Mukherji S
    Chemosphere; 2009 Jun; 75(11):1429-39. PubMed ID: 19344929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing random forest based QSAR models for predicting the mixture toxicity of TiO
    Trinh TX; Seo M; Yoon TH; Kim J
    NanoImpact; 2022 Jan; 25():100383. PubMed ID: 35559889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observed and predicted embryotoxic and teratogenic effects of organic and inorganic environmental pollutants and their mixtures in zebrafish (Danio rerio).
    Nilén G; Obamwonyi OS; Liem-Nguyen V; Engwall M; Larsson M; Keiter SH
    Aquat Toxicol; 2022 Jul; 248():106175. PubMed ID: 35523058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Status Quo in Data Availability and Predictive Models of Nano-Mixture Toxicity.
    Trinh TX; Kim J
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33430414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.