These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 30893937)

  • 21. The DNA methylation landscape of giant viruses.
    Jeudy S; Rigou S; Alempic JM; Claverie JM; Abergel C; Legendre M
    Nat Commun; 2020 May; 11(1):2657. PubMed ID: 32461636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Restriction-Modification systems interplay causes avoidance of GATC site in prokaryotic genomes.
    Ershova A; Rusinov I; Vasiliev M; Spirin S; Karyagina A
    J Bioinform Comput Biol; 2016 Apr; 14(2):1641003. PubMed ID: 26972562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mobile restriction-modification system provides phage defence and resolves an epigenetic conflict with an antagonistic endonuclease.
    Birkholz N; Jackson SA; Fagerlund RD; Fineran PC
    Nucleic Acids Res; 2022 Apr; 50(6):3348-3361. PubMed ID: 35286398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interplay of intracellular and trans-cellular DNA methylation in natural archaeal consortia.
    Reva ON; La Cono V; Crisafi F; Smedile F; Mudaliyar M; Ghosal D; Giuliano L; Krupovic M; Yakimov MM
    Environ Microbiol Rep; 2024 Apr; 16(2):e13258. PubMed ID: 38589217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of N6-methyladenine in GATC sequences of Selenomonas ruminantium.
    Pristas P; Molnarova V; Javorsky P
    J Basic Microbiol; 1998; 38(4):283-7. PubMed ID: 9791949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The highly heterogeneous methylated genomes and diverse restriction-modification systems of bloom-forming Microcystis.
    Zhao L; Song Y; Li L; Gan N; Brand JJ; Song L
    Harmful Algae; 2018 May; 75():87-93. PubMed ID: 29778228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The DNA Phosphorothioation Restriction-Modification System Influences the Antimicrobial Resistance of Pathogenic Bacteria.
    Xu C; Rao J; Xie Y; Lu J; Li Z; Dong C; Wang L; Jiang J; Chen C; Chen S
    Microbiol Spectr; 2023 Feb; 11(1):e0350922. PubMed ID: 36598279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA Methylation in Prokaryotes.
    Casadesús J; Sánchez-Romero MA
    Adv Exp Med Biol; 2022; 1389():21-43. PubMed ID: 36350505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Context-dependent conservation of DNA methyltransferases in bacteria.
    Seshasayee AS; Singh P; Krishna S
    Nucleic Acids Res; 2012 Aug; 40(15):7066-73. PubMed ID: 22573173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell.
    Makarova KS; Aravind L; Galperin MY; Grishin NV; Tatusov RL; Wolf YI; Koonin EV
    Genome Res; 1999 Jul; 9(7):608-28. PubMed ID: 10413400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase-variable methylation and epigenetic regulation by type I restriction-modification systems.
    De Ste Croix M; Vacca I; Kwun MJ; Ralph JD; Bentley SD; Haigh R; Croucher NJ; Oggioni MR
    FEMS Microbiol Rev; 2017 Aug; 41(Supp_1):S3-S15. PubMed ID: 28830092
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Individual- and population-based diversity in restriction-modification systems.
    Pagie L; Hogeweg P
    Bull Math Biol; 2000 Jul; 62(4):759-74. PubMed ID: 10938631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative Genomics Reveals the Diversity of Restriction-Modification Systems and DNA Methylation Sites in Listeria monocytogenes.
    Chen P; den Bakker HC; Korlach J; Kong N; Storey DB; Paxinos EE; Ashby M; Clark T; Luong K; Wiedmann M; Weimer BC
    Appl Environ Microbiol; 2017 Feb; 83(3):. PubMed ID: 27836852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts.
    Oliveira PH; Touchon M; Rocha EP
    Nucleic Acids Res; 2014; 42(16):10618-31. PubMed ID: 25120263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sucrose Metabolism in Haloarchaea: Reassessment Using Genomics, Proteomics, and Metagenomics.
    Williams TJ; Allen MA; Liao Y; Raftery MJ; Cavicchioli R
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30658981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polymerase chain reaction-based screening method applicable universally to environmental haloarchaea and halobacteria for identifying polyhydroxyalkanoate producers among them.
    Mahansaria R; Choudhury JD; Mukherjee J
    Extremophiles; 2015 Sep; 19(5):1041-54. PubMed ID: 26240023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. REBASE: a database for DNA restriction and modification: enzymes, genes and genomes.
    Roberts RJ; Vincze T; Posfai J; Macelis D
    Nucleic Acids Res; 2023 Jan; 51(D1):D629-D630. PubMed ID: 36318248
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmids from Euryarchaeota.
    Forterre P; Krupovic M; Raymann K; Soler N
    Microbiol Spectr; 2014 Dec; 2(6):. PubMed ID: 26104461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems.
    Makarova KS; Wolf YI; Snir S; Koonin EV
    J Bacteriol; 2011 Nov; 193(21):6039-56. PubMed ID: 21908672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea.
    Koonin EV; Mushegian AR; Galperin MY; Walker DR
    Mol Microbiol; 1997 Aug; 25(4):619-37. PubMed ID: 9379893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.