These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 30894332)

  • 1. Multivariate group-level analysis for task fMRI data with canonical correlation analysis.
    Zhuang X; Yang Z; Sreenivasan KR; Mishra VR; Curran T; Nandy R; Cordes D
    Neuroimage; 2019 Jul; 194():25-41. PubMed ID: 30894332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A family of locally constrained CCA models for detecting activation patterns in fMRI.
    Zhuang X; Yang Z; Curran T; Byrd R; Nandy R; Cordes D
    Neuroimage; 2017 Apr; 149():63-84. PubMed ID: 28041980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D spatially-adaptive canonical correlation analysis: Local and global methods.
    Yang Z; Zhuang X; Sreenivasan K; Mishra V; Curran T; Byrd R; Nandy R; Cordes D
    Neuroimage; 2018 Apr; 169():240-255. PubMed ID: 29248697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robust deep neural network for denoising task-based fMRI data: An application to working memory and episodic memory.
    Yang Z; Zhuang X; Sreenivasan K; Mishra V; Curran T; Cordes D
    Med Image Anal; 2020 Feb; 60():101622. PubMed ID: 31811979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsupervised learning and mapping of active brain functional MRI signals based on hidden semi-Markov event sequence models.
    Faisan S; Thoraval L; Armspach JP; Metz-Lutz MN; Heitz F
    IEEE Trans Med Imaging; 2005 Feb; 24(2):263-76. PubMed ID: 15707252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal-spatial mean-shift clustering analysis to improve functional MRI activation detection.
    Ai L; Xiong J
    Magn Reson Imaging; 2016 Nov; 34(9):1283-1291. PubMed ID: 27469315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the performance of local canonical correlation analysis in fMRI using spatial constraints.
    Cordes D; Jin M; Curran T; Nandy R
    Hum Brain Mapp; 2012 Nov; 33(11):2611-26. PubMed ID: 23074078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
    De Martino F; Valente G; Staeren N; Ashburner J; Goebel R; Formisano E
    Neuroimage; 2008 Oct; 43(1):44-58. PubMed ID: 18672070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA.
    Zhang J; Anderson JR; Liang L; Pulapura SK; Gatewood L; Rottenberg DA; Strother SC
    Magn Reson Imaging; 2009 Feb; 27(2):264-78. PubMed ID: 18849131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Support vector machine learning-based fMRI data group analysis.
    Wang Z; Childress AR; Wang J; Detre JA
    Neuroimage; 2007 Jul; 36(4):1139-51. PubMed ID: 17524674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-independent method for fMRI analysis.
    Soltanian-Zadeh H; Peck DJ; Hearshen DO; Lajiness-O'Neill RR
    IEEE Trans Med Imaging; 2004 Mar; 23(3):285-96. PubMed ID: 15027521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved application of independent component analysis to functional magnetic resonance imaging study via linear projection techniques.
    Long Z; Chen K; Wu X; Reiman E; Peng D; Yao L
    Hum Brain Mapp; 2009 Feb; 30(2):417-31. PubMed ID: 18095282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of fMRI data by blind separation into independent spatial components.
    McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ
    Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of functional MRI for detection, decoding and high-resolution imaging of the response patterns of cortical columns.
    Chaimow D; Uğurbil K; Shmuel A
    Neuroimage; 2018 Jan; 164():67-99. PubMed ID: 28461061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach to activation detection in fMRI based on empirical mode decomposition.
    Zheng T; Cai M; Jiang T
    J Integr Neurosci; 2010 Dec; 9(4):407-27. PubMed ID: 21213412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multisubject activation detection in fMRI by testing correlation of data with a signal subspace.
    Shams SM; Hossein-Zadeh GA; Soltanian-Zadeh H
    Magn Reson Imaging; 2006 Jul; 24(6):775-84. PubMed ID: 16824972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multivariate Bayesian decoding of single-trial event-related fMRI responses for memory retrieval of voluntary actions.
    Lee D; Yun S; Jang C; Park HJ
    PLoS One; 2017; 12(8):e0182657. PubMed ID: 28777830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI.
    Makni S; Idier J; Vincent T; Thirion B; Dehaene-Lambertz G; Ciuciu P
    Neuroimage; 2008 Jul; 41(3):941-69. PubMed ID: 18439839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MIDAS: Regionally linear multivariate discriminative statistical mapping.
    Varol E; Sotiras A; Davatzikos C
    Neuroimage; 2018 Jul; 174():111-126. PubMed ID: 29524624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional overestimation due to spatial smoothing of fMRI data.
    Liu P; Calhoun V; Chen Z
    J Neurosci Methods; 2017 Nov; 291():1-12. PubMed ID: 28789993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.