BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 30894431)

  • 1. Glu-108 in Saccharomyces cerevisiae Rad51 Is Critical for DNA Damage-Induced Nuclear Function.
    Suhane T; Bindumadhavan V; Fangaria N; Nair AS; Tabassum W; Muley P; Bhattacharyya MK; Bhattacharyya S
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30894431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Both the charged linker region and ATPase domain of Hsp90 are essential for Rad51-dependent DNA repair.
    Suhane T; Laskar S; Advani S; Roy N; Varunan S; Bhattacharyya D; Bhattacharyya S; Bhattacharyya MK
    Eukaryot Cell; 2015 Jan; 14(1):64-77. PubMed ID: 25380755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of Rad51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths.
    Paffett KS; Clikeman JA; Palmer S; Nickoloff JA
    DNA Repair (Amst); 2005 Jun; 4(6):687-98. PubMed ID: 15878310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of yeast Rad51 and Rad52 relieves Rad52-mediated inhibition of de novo telomere addition.
    Epum EA; Mohan MJ; Ruppe NP; Friedman KL
    PLoS Genet; 2020 Feb; 16(2):e1008608. PubMed ID: 32012161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rad52 promotes postinvasion steps of meiotic double-strand-break repair.
    Lao JP; Oh SD; Shinohara M; Shinohara A; Hunter N
    Mol Cell; 2008 Feb; 29(4):517-24. PubMed ID: 18313389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rad51 replication fork recruitment is required for DNA damage tolerance.
    González-Prieto R; Muñoz-Cabello AM; Cabello-Lobato MJ; Prado F
    EMBO J; 2013 May; 32(9):1307-21. PubMed ID: 23563117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast recombination factor Rdh54 functionally interacts with the Rad51 recombinase and catalyzes Rad51 removal from DNA.
    Chi P; Kwon Y; Seong C; Epshtein A; Lam I; Sung P; Klein HL
    J Biol Chem; 2006 Sep; 281(36):26268-79. PubMed ID: 16831867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae.
    Choi JE; Heo SH; Kim MJ; Chung WH
    Free Radic Biol Med; 2018 Dec; 129():97-106. PubMed ID: 30223018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the Rad52 amino-terminal DNA binding activity in DNA strand capture in homologous recombination.
    Shi I; Hallwyl SC; Seong C; Mortensen U; Rothstein R; Sung P
    J Biol Chem; 2009 Nov; 284(48):33275-84. PubMed ID: 19812039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Rad51 recombinase presynaptic filament assembly via interactions with the Rad52 mediator and the Srs2 anti-recombinase.
    Seong C; Colavito S; Kwon Y; Sung P; Krejci L
    J Biol Chem; 2009 Sep; 284(36):24363-71. PubMed ID: 19605344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52.
    Milne GT; Weaver DT
    Genes Dev; 1993 Sep; 7(9):1755-65. PubMed ID: 8370524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1.
    Pohl TJ; Nickoloff JA
    Mol Cell Biol; 2008 Feb; 28(3):897-906. PubMed ID: 18039855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-terminal acetyltransferase NatB regulates Rad51-dependent repair of double-strand breaks in Saccharomyces cerevisiae.
    Sugaya N; Tanaka S; Keyamura K; Noda S; Akanuma G; Hishida T
    Genes Genet Syst; 2023 Sep; 98(2):61-72. PubMed ID: 37331807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair.
    Miyazaki T; Bressan DA; Shinohara M; Haber JE; Shinohara A
    EMBO J; 2004 Feb; 23(4):939-49. PubMed ID: 14765116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yap1 and Skn7 genetically interact with Rad51 in response to oxidative stress and DNA double-strand break in Saccharomyces cerevisiae.
    Yi DG; Kim MJ; Choi JE; Lee J; Jung J; Huh WK; Chung WH
    Free Radic Biol Med; 2016 Dec; 101():424-433. PubMed ID: 27838435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different mating-type-regulated genes affect the DNA repair defects of Saccharomyces RAD51, RAD52 and RAD55 mutants.
    Valencia-Burton M; Oki M; Johnson J; Seier TA; Kamakaka R; Haber JE
    Genetics; 2006 Sep; 174(1):41-55. PubMed ID: 16782999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vital roles of the second DNA-binding site of Rad52 protein in yeast homologous recombination.
    Arai N; Kagawa W; Saito K; Shingu Y; Mikawa T; Kurumizaka H; Shibata T
    J Biol Chem; 2011 May; 286(20):17607-17. PubMed ID: 21454474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms.
    Moriel-Carretero M; Aguilera A
    Mol Cell; 2010 Mar; 37(5):690-701. PubMed ID: 20227372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: role of RAD1 and the RAD52 epistasis group genes.
    Dong Z; Fasullo M
    Nucleic Acids Res; 2003 May; 31(10):2576-85. PubMed ID: 12736307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the interaction between the Saccharomyces cerevisiae Rad51 recombinase and the DNA translocase Rdh54.
    Santa Maria SR; Kwon Y; Sung P; Klein HL
    J Biol Chem; 2013 Jul; 288(30):21999-2005. PubMed ID: 23798704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.