These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion. Tsubota K; Wada S; Liu H Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211 [TBL] [Abstract][Full Text] [Related]
5. Mechanical properties of subisostatic random networks composed of nonlinear fibers. Hatami-Marbini H; Rohanifar M Soft Matter; 2020 Aug; 16(30):7156-7164. PubMed ID: 32671376 [TBL] [Abstract][Full Text] [Related]
6. Stability and anomalous entropic elasticity of subisostatic random-bond networks. Wigbers MC; MacKintosh FC; Dennison M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042145. PubMed ID: 26565206 [TBL] [Abstract][Full Text] [Related]
7. Effects of local incompressibility on the rheology of composite biopolymer networks. Gannavarapu A; Arzash S; Muntz I; Shivers JL; Klianeva AM; Koenderink GH; MacKintosh FC Eur Phys J E Soft Matter; 2024 May; 47(5):36. PubMed ID: 38802588 [TBL] [Abstract][Full Text] [Related]
8. Energetic rigidity. I. A unifying theory of mechanical stability. Damavandi OK; Hagh VF; Santangelo CD; Manning ML Phys Rev E; 2022 Feb; 105(2-2):025003. PubMed ID: 35291185 [TBL] [Abstract][Full Text] [Related]
9. Geometry and the onset of rigidity in a disordered network. Vermeulen MFJ; Bose A; Storm C; Ellenbroek WG Phys Rev E; 2017 Nov; 96(5-1):053003. PubMed ID: 29347645 [TBL] [Abstract][Full Text] [Related]
10. Normal Stresses, Contraction, and Stiffening in Sheared Elastic Networks. Baumgarten K; Tighe BP Phys Rev Lett; 2018 Apr; 120(14):148004. PubMed ID: 29694121 [TBL] [Abstract][Full Text] [Related]
12. Stiffening of under-constrained spring networks under isotropic strain. Lee CT; Merkel M Soft Matter; 2022 Jul; 18(29):5410-5425. PubMed ID: 35822259 [TBL] [Abstract][Full Text] [Related]
14. Linear and nonlinear mechanical responses can be quite different in models for biological tissues. Sahu P; Kang J; Erdemci-Tandogan G; Manning ML Soft Matter; 2020 Feb; 16(7):1850-1856. PubMed ID: 31984411 [TBL] [Abstract][Full Text] [Related]
15. Elastic moduli of a Brownian colloidal glass former. Fritschi S; Fuchs M J Phys Condens Matter; 2018 Jan; 30(2):024003. PubMed ID: 29182519 [TBL] [Abstract][Full Text] [Related]
16. Shear-Driven Solidification and Nonlinear Elasticity in Epithelial Tissues. Huang J; Cochran JO; Fielding SM; Marchetti MC; Bi D Phys Rev Lett; 2022 Apr; 128(17):178001. PubMed ID: 35570431 [TBL] [Abstract][Full Text] [Related]
17. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis. Jiang Y; Li G; Qian LX; Liang S; Destrade M; Cao Y Biomech Model Mechanobiol; 2015 Oct; 14(5):1119-28. PubMed ID: 25697960 [TBL] [Abstract][Full Text] [Related]
18. Understanding the scaling of boson peak through insensitivity of elastic heterogeneity to bending rigidity in polymer glasses. Tomoshige N; Goto S; Mizuno H; Mori T; Kim K; Matubayasi N J Phys Condens Matter; 2021 May; 33(27):. PubMed ID: 33930889 [TBL] [Abstract][Full Text] [Related]
19. Mechanics of fiber networks under a bulk strain. Arzash S; Sharma A; MacKintosh FC Phys Rev E; 2022 Dec; 106(6):L062403. PubMed ID: 36671162 [TBL] [Abstract][Full Text] [Related]
20. Boson peak, elasticity, and glass transition temperature in polymer glasses: Effects of the rigidity of chain bending. Tomoshige N; Mizuno H; Mori T; Kim K; Matubayasi N Sci Rep; 2019 Dec; 9(1):19514. PubMed ID: 31862997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]