BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 30894531)

  • 1. Reversible histone glycation is associated with disease-related changes in chromatin architecture.
    Zheng Q; Omans ND; Leicher R; Osunsade A; Agustinus AS; Finkin-Groner E; D'Ambrosio H; Liu B; Chandarlapaty S; Liu S; David Y
    Nat Commun; 2019 Mar; 10(1):1289. PubMed ID: 30894531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DJ-1 Proteoforms in Breast Cancer Cells: The Escape of Metabolic Epigenetic Misregulation.
    Scumaci D; Olivo E; Fiumara CV; La Chimia M; De Angelis MT; Mauro S; Costa G; Ambrosio FA; Alcaro S; Agosti V; Costanzo FS; Cuda G
    Cells; 2020 Aug; 9(9):. PubMed ID: 32858971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of non-enzymatic glycosylation in the epigenetics of cancer.
    Rehman S; Aatif M; Rafi Z; Khan MY; Shahab U; Ahmad S; Farhan M
    Semin Cancer Biol; 2022 Aug; 83():543-555. PubMed ID: 33276090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein arginine deiminase 4 antagonizes methylglyoxal-induced histone glycation.
    Zheng Q; Osunsade A; David Y
    Nat Commun; 2020 Jun; 11(1):3241. PubMed ID: 32591537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: Role of oxidative stress mediated downregulation of DJ-1 in Parkinson's disease.
    Sharma N; Rao SP; Kalivendi SV
    Free Radic Biol Med; 2019 May; 135():28-37. PubMed ID: 30796974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (De)Toxifying the Epigenetic Code.
    Zheng Q; Prescott NA; Maksimovic I; David Y
    Chem Res Toxicol; 2019 May; 32(5):796-807. PubMed ID: 30839196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small Substrate or Large? Debate Over the Mechanism of Glycation Adduct Repair by DJ-1.
    Jun YW; Kool ET
    Cell Chem Biol; 2020 Sep; 27(9):1117-1123. PubMed ID: 32783963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SILAC-based proteomic analysis to dissect the "histone modification signature" of human breast cancer cells.
    Cuomo A; Moretti S; Minucci S; Bonaldi T
    Amino Acids; 2011 Jul; 41(2):387-99. PubMed ID: 20617350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A chemical field guide to histone nonenzymatic modifications.
    Faulkner S; Maksimovic I; David Y
    Curr Opin Chem Biol; 2021 Aug; 63():180-187. PubMed ID: 34157651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further characterization of the Maillard deglycase DJ-1 and its prokaryotic homologs, deglycase 1/Hsp31, deglycase 2/YhbO, and deglycase 3/YajL.
    Richarme G; Abdallah J; Mathas N; Gautier V; Dairou J
    Biochem Biophys Res Commun; 2018 Sep; 503(2):703-709. PubMed ID: 29932913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone Post-Translational Modifications and Nucleosome Organisation in Transcriptional Regulation: Some Open Questions.
    Castillo J; López-Rodas G; Franco L
    Adv Exp Med Biol; 2017; 966():65-92. PubMed ID: 28639249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone modification: cause or cog?
    Henikoff S; Shilatifard A
    Trends Genet; 2011 Oct; 27(10):389-96. PubMed ID: 21764166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein Repair from Glycation by Glyoxals by the DJ-1 Family Maillard Deglycases.
    Mihoub M; Abdallah J; Richarme G
    Adv Exp Med Biol; 2017; 1037():133-147. PubMed ID: 29147907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitation of nucleosome acetylation and other histone posttranslational modifications using microscale NU-ELISA.
    Dai B; Giardina C; Rasmussen TP
    Methods Mol Biol; 2013; 981():167-76. PubMed ID: 23381861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-enzymatic Covalent Modifications as a New Chapter in the Histone Code.
    Maksimovic I; David Y
    Trends Biochem Sci; 2021 Sep; 46(9):718-730. PubMed ID: 33965314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of histone H3 acetylation in the nucleosome core during mouse pre-implantation development.
    Ziegler-Birling C; Daujat S; Schneider R; Torres-Padilla ME
    Epigenetics; 2016 Aug; 11(8):553-62. PubMed ID: 26479850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic meets metabolism: novel vulnerabilities to fight cancer.
    Scumaci D; Zheng Q
    Cell Commun Signal; 2023 Sep; 21(1):249. PubMed ID: 37735413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Direct" and "Indirect" Effects of Histone Modifications: Modulation of Sterical Bulk as a Novel Source of Functionality.
    Krajewski WA
    Bioessays; 2020 Jan; 42(1):e1900136. PubMed ID: 31805213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extensive and systematic rewiring of histone post-translational modifications in cancer model systems.
    Noberini R; Osti D; Miccolo C; Richichi C; Lupia M; Corleone G; Hong SP; Colombo P; Pollo B; Fornasari L; Pruneri G; Magnani L; Cavallaro U; Chiocca S; Minucci S; Pelicci G; Bonaldi T
    Nucleic Acids Res; 2018 May; 46(8):3817-3832. PubMed ID: 29618087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Communication Between Nucleosomes Enables Spreading and Epigenetic Memory of Histone Modifications.
    Erdel F
    Bioessays; 2017 Dec; 39(12):. PubMed ID: 29034500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.