These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 30894596)
1. Carbohydrate Metabolic Compensation Coupled to High Tolerance to Oxidative Stress in Ticks. Della Noce B; Carvalho Uhl MV; Machado J; Waltero CF; de Abreu LA; da Silva RM; da Fonseca RN; de Barros CM; Sabadin G; Konnai S; da Silva Vaz I; Ohashi K; Logullo C Sci Rep; 2019 Mar; 9(1):4753. PubMed ID: 30894596 [TBL] [Abstract][Full Text] [Related]
2. Redox imbalance induces remodeling of glucose metabolism in Rhipicephalus microplus embryonic cell line. Della Noce B; Martins da Silva R; de Carvalho Uhl MV; Konnai S; Ohashi K; Calixto C; Arcanjo A; de Abreu LA; de Carvalho SS; da Silva Vaz I; Logullo C J Biol Chem; 2022 Mar; 298(3):101599. PubMed ID: 35063504 [TBL] [Abstract][Full Text] [Related]
3. Non-classical gluconeogenesis-dependent glucose metabolism in Rhipicephalus microplus embryonic cell line BME26. da Silva RM; Noce BD; Waltero CF; Costa EP; de Abreu LA; Githaka NW; Moraes J; Gomes HF; Konnai S; Vaz Ida S; Ohashi K; Logullo C Int J Mol Sci; 2015 Jan; 16(1):1821-39. PubMed ID: 25594873 [TBL] [Abstract][Full Text] [Related]
4. Glucose-6-phosphate dehydrogenase and alternative oxidase are involved in the cross tolerance of highland barley to salt stress and UV-B radiation. Zhao C; Wang X; Wang X; Wu K; Li P; Chang N; Wang J; Wang F; Li J; Bi Y J Plant Physiol; 2015 Jun; 181():83-95. PubMed ID: 26009793 [TBL] [Abstract][Full Text] [Related]
5. Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Izawa S; Maeda K; Miki T; Mano J; Inoue Y; Kimura A Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):811-7. PubMed ID: 9480895 [TBL] [Abstract][Full Text] [Related]
6. Metabolic reconfiguration of the central glucose metabolism: a crucial strategy of Leishmania donovani for its survival during oxidative stress. Ghosh AK; Sardar AH; Mandal A; Saini S; Abhishek K; Kumar A; Purkait B; Singh R; Das S; Mukhopadhyay R; Roy S; Das P FASEB J; 2015 May; 29(5):2081-98. PubMed ID: 25690656 [TBL] [Abstract][Full Text] [Related]
7. Immune-related redox metabolism of embryonic cells of the tick Rhipicephalus microplus (BME26) in response to infection with Anaplasma marginale. Kalil SP; Rosa RDD; Capelli-Peixoto J; Pohl PC; Oliveira PL; Fogaça AC; Daffre S Parasit Vectors; 2017 Dec; 10(1):613. PubMed ID: 29258559 [TBL] [Abstract][Full Text] [Related]
8. The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Valderrama R; Corpas FJ; Carreras A; Gómez-Rodríguez MV; Chaki M; Pedrajas JR; Fernández-Ocaña A; Del Río LA; Barroso JB Plant Cell Environ; 2006 Jul; 29(7):1449-59. PubMed ID: 17080966 [TBL] [Abstract][Full Text] [Related]
13. Involvement of ABA- and H2O2-dependent cytosolic glucose-6-phosphate dehydrogenase in maintaining redox homeostasis in soybean roots under drought stress. Wang H; Yang L; Li Y; Hou J; Huang J; Liang W Plant Physiol Biochem; 2016 Oct; 107():126-136. PubMed ID: 27285781 [TBL] [Abstract][Full Text] [Related]
14. Adaptation to hydrogen peroxide in Saccharomyces cerevisiae: the role of NADPH-generating systems and the SKN7 transcription factor. Ng CH; Tan SX; Perrone GG; Thorpe GW; Higgins VJ; Dawes IW Free Radic Biol Med; 2008 Mar; 44(6):1131-45. PubMed ID: 18206664 [TBL] [Abstract][Full Text] [Related]
15. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress. Filosa S; Fico A; Paglialunga F; Balestrieri M; Crooke A; Verde P; Abrescia P; Bautista JM; Martini G Biochem J; 2003 Mar; 370(Pt 3):935-43. PubMed ID: 12466018 [TBL] [Abstract][Full Text] [Related]
16. Glyphosate-induced oxidative stress in Arabidopsis thaliana affecting peroxisomal metabolism and triggers activity in the oxidative phase of the pentose phosphate pathway (OxPPP) involved in NADPH generation. de Freitas-Silva L; Rodríguez-Ruiz M; Houmani H; da Silva LC; Palma JM; Corpas FJ J Plant Physiol; 2017 Nov; 218():196-205. PubMed ID: 28888161 [TBL] [Abstract][Full Text] [Related]
17. Importance of glucose-6-phosphate dehydrogenase activity in cell death. Tian WN; Braunstein LD; Apse K; Pang J; Rose M; Tian X; Stanton RC Am J Physiol; 1999 May; 276(5):C1121-31. PubMed ID: 10329961 [TBL] [Abstract][Full Text] [Related]
18. Oxidants in Physiological Processes. Knaus UG Handb Exp Pharmacol; 2021; 264():27-47. PubMed ID: 32767144 [TBL] [Abstract][Full Text] [Related]
19. The overexpression of NADPH-producing enzymes counters the oxidative stress evoked by gallium, an iron mimetic. Bériault R; Hamel R; Chenier D; Mailloux RJ; Joly H; Appanna VD Biometals; 2007 Apr; 20(2):165-76. PubMed ID: 16900398 [TBL] [Abstract][Full Text] [Related]
20. Activation of NADPH-recycling systems in leaves and roots of Arabidopsis thaliana under arsenic-induced stress conditions is accelerated by knock-out of Nudix hydrolase 19 (AtNUDX19) gene. Corpas FJ; Aguayo-Trinidad S; Ogawa T; Yoshimura K; Shigeoka S J Plant Physiol; 2016 Mar; 192():81-9. PubMed ID: 26878367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]