These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 30895294)
1. ERVcaller: identifying polymorphic endogenous retrovirus and other transposable element insertions using whole-genome sequencing data. Chen X; Li D Bioinformatics; 2019 Oct; 35(20):3913-3922. PubMed ID: 30895294 [TBL] [Abstract][Full Text] [Related]
2. T-lex3: an accurate tool to genotype and estimate population frequencies of transposable elements using the latest short-read whole genome sequencing data. Bogaerts-Márquez M; Barrón MG; Fiston-Lavier AS; Vendrell-Mir P; Castanera R; Casacuberta JM; González J Bioinformatics; 2020 Feb; 36(4):1191-1197. PubMed ID: 31580402 [TBL] [Abstract][Full Text] [Related]
3. McClintock: An Integrated Pipeline for Detecting Transposable Element Insertions in Whole-Genome Shotgun Sequencing Data. Nelson MG; Linheiro RS; Bergman CM G3 (Bethesda); 2017 Aug; 7(8):2763-2778. PubMed ID: 28637810 [TBL] [Abstract][Full Text] [Related]
4. Genotyping of Transposable Element Insertions Segregating in Human Populations Using Short-Read Realignments. Chen X; Bourque G; Goubert C Methods Mol Biol; 2023; 2607():63-83. PubMed ID: 36449158 [TBL] [Abstract][Full Text] [Related]
5. Identification and Genotyping of Transposable Element Insertions From Genome Sequencing Data. Chu C; Zhao B; Park PJ; Lee EA Curr Protoc Hum Genet; 2020 Sep; 107(1):e102. PubMed ID: 32662945 [TBL] [Abstract][Full Text] [Related]
6. A benchmark and an algorithm for detecting germline transposon insertions and measuring de novo transposon insertion frequencies. Yu T; Huang X; Dou S; Tang X; Luo S; Theurkauf WE; Lu J; Weng Z Nucleic Acids Res; 2021 May; 49(8):e44. PubMed ID: 33511407 [TBL] [Abstract][Full Text] [Related]
7. HiTea: a computational pipeline to identify non-reference transposable element insertions in Hi-C data. Jain D; Chu C; Alver BH; Lee S; Lee EA; Park PJ Bioinformatics; 2021 May; 37(8):1045-1051. PubMed ID: 33136153 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive identification of transposable element insertions using multiple sequencing technologies. Chu C; Borges-Monroy R; Viswanadham VV; Lee S; Li H; Lee EA; Park PJ Nat Commun; 2021 Jun; 12(1):3836. PubMed ID: 34158502 [TBL] [Abstract][Full Text] [Related]
9. Transposable elements that have recently been mobile in the human genome. Autio MI; Bin Amin T; Perrin A; Wong JY; Foo RS; Prabhakar S BMC Genomics; 2021 Nov; 22(1):789. PubMed ID: 34732136 [TBL] [Abstract][Full Text] [Related]
10. Evidence for positive selection on recent human transposable element insertions. Rishishwar L; Wang L; Wang J; Yi SV; Lachance J; Jordan IK Gene; 2018 Oct; 675():69-79. PubMed ID: 29953920 [TBL] [Abstract][Full Text] [Related]
11. A Maximum-Likelihood Approach to Estimating the Insertion Frequencies of Transposable Elements from Population Sequencing Data. Jiang X; Tang H; Mohammed Ismail W; Lynch M Mol Biol Evol; 2018 Oct; 35(10):2560-2571. PubMed ID: 30099533 [TBL] [Abstract][Full Text] [Related]
12. The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Nellåker C; Keane TM; Yalcin B; Wong K; Agam A; Belgard TG; Flint J; Adams DJ; Frankel WN; Ponting CP Genome Biol; 2012 Jun; 13(6):R45. PubMed ID: 22703977 [TBL] [Abstract][Full Text] [Related]
13. Reproducible evaluation of transposable element detectors with McClintock 2 guides accurate inference of Ty insertion patterns in yeast. Chen J; Basting PJ; Han S; Garfinkel DJ; Bergman CM Mob DNA; 2023 Jul; 14(1):8. PubMed ID: 37452430 [TBL] [Abstract][Full Text] [Related]
14. RelocaTE2: a high resolution transposable element insertion site mapping tool for population resequencing. Chen J; Wrightsman TR; Wessler SR; Stajich JE PeerJ; 2017; 5():e2942. PubMed ID: 28149701 [TBL] [Abstract][Full Text] [Related]
15. Benchmarking computational tools for polymorphic transposable element detection. Rishishwar L; Mariño-Ramírez L; Jordan IK Brief Bioinform; 2017 Nov; 18(6):908-918. PubMed ID: 27524380 [TBL] [Abstract][Full Text] [Related]
16. The use of RelocaTE and unassembled short reads to produce high-resolution snapshots of transposable element generated diversity in rice. Robb SM; Lu L; Valencia E; Burnette JM; Okumoto Y; Wessler SR; Stajich JE G3 (Bethesda); 2013 Jun; 3(6):949-57. PubMed ID: 23576519 [TBL] [Abstract][Full Text] [Related]
17. TypeTE: a tool to genotype mobile element insertions from whole genome resequencing data. Goubert C; Thomas J; Payer LM; Kidd JM; Feusier J; Watkins WS; Burns KH; Jorde LB; Feschotte C Nucleic Acids Res; 2020 Apr; 48(6):e36. PubMed ID: 32067044 [TBL] [Abstract][Full Text] [Related]
18. Whole-genome comparison of endogenous retrovirus segregation across wild and domestic host species populations. Rivas-Carrillo SD; Pettersson ME; Rubin CJ; Jern P Proc Natl Acad Sci U S A; 2018 Oct; 115(43):11012-11017. PubMed ID: 30297425 [TBL] [Abstract][Full Text] [Related]
19. T-lex: a program for fast and accurate assessment of transposable element presence using next-generation sequencing data. Fiston-Lavier AS; Carrigan M; Petrov DA; González J Nucleic Acids Res; 2011 Mar; 39(6):e36. PubMed ID: 21177644 [TBL] [Abstract][Full Text] [Related]
20. Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Wildschutte JH; Williams ZH; Montesion M; Subramanian RP; Kidd JM; Coffin JM Proc Natl Acad Sci U S A; 2016 Apr; 113(16):E2326-34. PubMed ID: 27001843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]