BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 30895341)

  • 1. Short-latency afferent-induced facilitation and inhibition as predictors of thermally induced variations in corticomotor excitability.
    Ansari Y; Tremblay F
    Exp Brain Res; 2019 Jun; 237(6):1445-1455. PubMed ID: 30895341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variations in corticomotor excitability in response to distal focal thermal stimulation.
    Ansari Y; Remaud A; Tremblay F
    Somatosens Mot Res; 2018 Jun; 35(2):69-79. PubMed ID: 29649910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of short-latency afferent inhibition and short-interval intracortical inhibition by test stimulus intensity and motor-evoked potential amplitude.
    Miyaguchi S; Kojima S; Sasaki R; Tamaki H; Onishi H
    Neuroreport; 2017 Dec; 28(18):1202-1207. PubMed ID: 29064955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory afferent inhibition within and between limbs in humans.
    Bikmullina R; Bäumer T; Zittel S; Münchau A
    Clin Neurophysiol; 2009 Mar; 120(3):610-8. PubMed ID: 19136299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The recent history of afferent stimulation modulates corticospinal excitability.
    Bonnesen MT; Fuglsang SA; Siebner HR; Christiansen L
    Neuroimage; 2022 Sep; 258():119365. PubMed ID: 35690256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human brain cortical correlates of short-latency afferent inhibition: a combined EEG-TMS study.
    Ferreri F; Ponzo D; Hukkanen T; Mervaala E; Könönen M; Pasqualetti P; Vecchio F; Rossini PM; Määttä S
    J Neurophysiol; 2012 Jul; 108(1):314-23. PubMed ID: 22457460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of sensorimotor circuits during retrieval of negative Autobiographical Memories: Exploring the impact of personality dimensions.
    Mineo L; Concerto C; Patel D; Mayorga T; Chusid E; Infortuna C; Aguglia E; Sarraf Y; Battaglia F
    Neuropsychologia; 2018 Feb; 110():190-196. PubMed ID: 28404231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between short-interval intracortical inhibition and short-latency afferent inhibition in human motor cortex.
    Alle H; Heidegger T; Kriváneková L; Ziemann U
    J Physiol; 2009 Nov; 587(Pt 21):5163-76. PubMed ID: 19752113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of water immersion on short- and long-latency afferent inhibition, short-interval intracortical inhibition, and intracortical facilitation.
    Sato D; Yamashiro K; Yoshida T; Onishi H; Shimoyama Y; Maruyama A
    Clin Neurophysiol; 2013 Sep; 124(9):1846-52. PubMed ID: 23688919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decrease in short-latency afferent inhibition during corticomotor postexercise depression following repetitive finger movement.
    Miyaguchi S; Kojima S; Sasaki R; Kotan S; Kirimoto H; Tamaki H; Onishi H
    Brain Behav; 2017 Jul; 7(7):e00744. PubMed ID: 28729946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-latency afferent inhibition determined by the sensory afferent volley.
    Bailey AZ; Asmussen MJ; Nelson AJ
    J Neurophysiol; 2016 Aug; 116(2):637-44. PubMed ID: 27226451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between short latency afferent inhibition and long interval intracortical inhibition.
    Udupa K; Ni Z; Gunraj C; Chen R
    Exp Brain Res; 2009 Nov; 199(2):177-83. PubMed ID: 19730839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Afferent-induced facilitation of primary motor cortex excitability in the region controlling hand muscles in humans.
    Devanne H; Degardin A; Tyvaert L; Bocquillon P; Houdayer E; Manceaux A; Derambure P; Cassim F
    Eur J Neurosci; 2009 Aug; 30(3):439-48. PubMed ID: 19686433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral sensory activation of cortical circuits in the leg motor cortex of man.
    Roy FD; Gorassini MA
    J Physiol; 2008 Sep; 586(17):4091-105. PubMed ID: 18599540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paired-pulse afferent modulation of TMS responses reveals a selective decrease in short latency afferent inhibition with age.
    Young-Bernier M; Davidson PS; Tremblay F
    Neurobiol Aging; 2012 Apr; 33(4):835.e1-11. PubMed ID: 21958964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centre-surround organization of fast sensorimotor integration in human motor hand area.
    Dubbioso R; Raffin E; Karabanov A; Thielscher A; Siebner HR
    Neuroimage; 2017 Sep; 158():37-47. PubMed ID: 28669907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatosensory and transcranial direct current stimulation effects on manual dexterity and motor cortex function: A metaplasticity study.
    Trudgen A; Cirillo J; Byblow WD
    Brain Stimul; 2019; 12(4):938-947. PubMed ID: 30850217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cathodal transcranial direct current stimulation to primary somatosensory cortex on short-latency afferent inhibition.
    Kojima S; Onishi H; Miyaguchi S; Kotan S; Sugawara K; Kirimoto H; Tamaki H
    Neuroreport; 2015 Aug; 26(11):634-7. PubMed ID: 26103117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological correlates of short-latency afferent inhibition: a combined EEG and TMS study.
    Bikmullina R; Kicić D; Carlson S; Nikulin VV
    Exp Brain Res; 2009 Apr; 194(4):517-26. PubMed ID: 19241068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of sensory deprivation and perturbation of trigeminal afferent fibers on corticomotor control of human tongue musculature.
    Halkjaer L; Melsen B; McMillan AS; Svensson P
    Exp Brain Res; 2006 Apr; 170(2):199-205. PubMed ID: 16328282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.