These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3089537)

  • 21. Spatial memory extinction differentially affects dorsal and ventral hippocampal metabolic activity and associated functional brain networks.
    Méndez-Couz M; González-Pardo H; Vallejo G; Arias JL; Conejo NM
    Hippocampus; 2016 Oct; 26(10):1265-75. PubMed ID: 27102086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Projections from the hippocampal region to the mammillary bodies in macaque monkeys.
    Aggleton JP; Vann SD; Saunders RC
    Eur J Neurosci; 2005 Nov; 22(10):2519-30. PubMed ID: 16307594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Topography of the ACTH-immunoreactive neurons in the basal hypothalamus of the rat brain.
    Knigge KM; Joseph SA; Nocton J
    Brain Res; 1981 Jul; 216(2):333-41. PubMed ID: 6265033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The dorsal premammillary nucleus: an unusual component of the mammillary body.
    Canteras NS; Swanson LW
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10089-93. PubMed ID: 1279669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neurotensin and neuromedin N brain levels after fornix transection: evidence for an efficient neurotensin precursor processing in subicular neurons.
    Nicot A; Bidard JN; Kitabgi P; Lhiaubet AM; Masuo Y; Palkovits M; Rostène W; Bérod A
    Brain Res; 1995 Dec; 702(1-2):279-83. PubMed ID: 8846090
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mammillary body lesions and restricted subicular output lesions produce long-lasting DRL performance impairments in rats.
    Tonkiss J; Rawlins JN
    Exp Brain Res; 1992; 90(3):572-82. PubMed ID: 1426113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single mammillary body cells with divergent axon collaterals. Demonstration by a simple, fluorescent retrograde double labeling technique in the rat.
    van der Kooy D; Kuypers HG; Catsman-Berrevoets CE
    Brain Res; 1978 Dec; 158(1):189-96. PubMed ID: 21348360
    [No Abstract]   [Full Text] [Related]  

  • 28. Afferent and efferent enkephalinergic systems of the tegmental nuclei of Gudden in the rat: an immunocytochemical study.
    Yamano M; Tohyama M
    Brain Res; 1987 Apr; 408(1-2):22-30. PubMed ID: 3297249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neurons in the rat subiculum with transient postmamillary collaterals during development maintain projections to the mamillary complex.
    Stanfield BB; O'Leary DD
    Exp Brain Res; 1988; 72(1):185-90. PubMed ID: 3139439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective disconnection of the hippocampal formation projections to the mammillary bodies produces only mild deficits on spatial memory tasks: implications for fornix function.
    Vann SD; Erichsen JT; O'Mara SM; Aggleton JP
    Hippocampus; 2011 Sep; 21(9):945-57. PubMed ID: 20865745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurotensin immunoreactive neurons in the human infant diencephalon.
    Sakamoto N; Michel JP; Kopp N; Pearson J
    Brain Res; 1987 Feb; 403(1):31-42. PubMed ID: 3548888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An autoradiographic study of the projections of the mammillothalamic tract in the rat.
    Cruce JA
    Brain Res; 1975 Feb; 85(2):211-9. PubMed ID: 803393
    [No Abstract]   [Full Text] [Related]  

  • 33. Afferent projections to the mammillary complex of the rat, with special reference to those from surrounding hypothalamic regions.
    Gonzalo-Ruiz A; Alonso A; Sanz JM; Llinás RR
    J Comp Neurol; 1992 Jul; 321(2):277-99. PubMed ID: 1380015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efferent connections of the hippocampal formation in the rat.
    Meibach RC; Siegel A
    Brain Res; 1977 Mar; 124(2):197-224. PubMed ID: 402984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distribution of neurotensin/neuromedin N mRNA in rat forebrain: unexpected abundance in hippocampus and subiculum.
    Alexander MJ; Miller MA; Dorsa DM; Bullock BP; Melloni RH; Dobner PR; Leeman SE
    Proc Natl Acad Sci U S A; 1989 Jul; 86(13):5202-6. PubMed ID: 2740352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative anatomical study of the tegmentomammillary projections in some mammals: a horseradish peroxidase study.
    Hayakawa T; Zyo K
    Brain Res; 1984 May; 300(2):335-49. PubMed ID: 6428701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mammillary bodies and memory: more than a hippocampal relay.
    Vann SD; Nelson AJ
    Prog Brain Res; 2015; 219():163-85. PubMed ID: 26072239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunocytochemical localization on neuropeptides in the fornix of rat, monkey and man.
    Roberts GW; Allen Y; Crow TJ; Polak JM
    Brain Res; 1983 Mar; 263(1):151-5. PubMed ID: 6188516
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Demonstration of a pontine-hippocampal projection containing a ranatensin-like peptide.
    Chronwall BM; Skirboll LR; O'Donohue TL
    Neurosci Lett; 1985 Jan; 53(1):109-14. PubMed ID: 3887223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extended projections induced by partial deafferentation of the medial mammillary nucleus.
    Beech JN; Raisman G
    Brain Res; 1980 Apr; 188(2):347-55. PubMed ID: 6768422
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.