These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30895389)

  • 1. Performance Characteristics of a Novel Vibration Technique for the Densification of a Powder Bed within a Die of a Rotary Tablet Press - a Proof of Concept.
    Kalies A; Özcoban H; Leopold CS
    AAPS PharmSciTech; 2019 Mar; 20(4):148. PubMed ID: 30895389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Externally Applied Lower Punch Vibration and its Effects on Tablet Manufacturing.
    Kalies A; Özcoban H; Leopold CS
    Pharm Res; 2019 Oct; 36(12):173. PubMed ID: 31659476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of suction during die fill on a rotary tablet press.
    Jackson S; Sinka IC; Cocks AC
    Eur J Pharm Biopharm; 2007 Feb; 65(2):253-6. PubMed ID: 17123796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow behaviour of pharmaceutical powders during rotary die filling with a paddle feeder.
    Tang X; Zakhvatayeva A; Zhang L; Wu ZF; Sun P; Wu CY
    Int J Pharm; 2020 Jul; 585():119547. PubMed ID: 32569812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Powder die filling under gravity and suction fill mechanisms.
    Baserinia R; Sinka IC
    Int J Pharm; 2019 May; 563():135-155. PubMed ID: 30742983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of tablet weight variability by optimizing paddle speed in the forced feeder of a high-speed rotary tablet press.
    Peeters E; De Beer T; Vervaet C; Remon JP
    Drug Dev Ind Pharm; 2015 Apr; 41(4):530-9. PubMed ID: 24502268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach to avoid capping and/or lamination by application of external lower punch vibration.
    Kalies A; Heinrich T; Leopold CS
    Int J Pharm; 2020 Apr; 580():119195. PubMed ID: 32135230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of punch tilting in evaluating powder densification in a rotary tablet machine.
    Cespi M; Misici-Falzi M; Bonacucina G; Ronchi S; Palmieri GF
    J Pharm Sci; 2008 Mar; 97(3):1277-84. PubMed ID: 17621681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image-based characterization of powder flow to predict the success of pharmaceutical minitablet manufacturing.
    Blanco D; Antikainen O; Räikkönen H; Mah PT; Healy AM; Juppo AM; Yliruusi J
    Int J Pharm; 2020 May; 581():119280. PubMed ID: 32229285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of particle shape on powder flowability of microcrystalline cellulose as determined using the vibration shear tube method.
    Horio T; Yasuda M; Matsusaka S
    Int J Pharm; 2014 Oct; 473(1-2):572-8. PubMed ID: 25079435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Powder flow during linear and rotary die filling.
    Zhong WZ; Zakhvatayeva A; Zhang L; Wu CY
    Int J Pharm; 2021 Jun; 602():120654. PubMed ID: 33915183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences between eccentric and rotary tablet machines in the evaluation of powder densification behaviour.
    Palmieri GF; Joiris E; Bonacucina G; Cespi M; Mercuri A
    Int J Pharm; 2005 Jul; 298(1):164-75. PubMed ID: 15951144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coprocessing of powdered cellulose and magnesium carbonate: direct tableting versus tableting after roll compaction/dry granulation.
    Freitag F; Runge J; Kleinebudde P
    Pharm Dev Technol; 2005; 10(3):353-62. PubMed ID: 16176015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of two paddle wheel geometries within the filling chamber of a rotary tablet press feed frame with regard to the distribution behavior of a model powder and the influence on the resulting tablet mass.
    Dühlmeyer KP; Özcoban H; Leopold CS
    Drug Dev Ind Pharm; 2019 Aug; 45(8):1233-1241. PubMed ID: 30724111
    [No Abstract]   [Full Text] [Related]  

  • 15. An experimental study of die filling of pharmaceutical powders using a rotary die filling system.
    Zakhvatayeva A; Zhong W; Makroo HA; Hare C; Wu CY
    Int J Pharm; 2018 Dec; 553(1-2):84-96. PubMed ID: 30321642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Comparison of four magnesium carbonates.
    Freitag F; Kleinebudde P
    Eur J Pharm Sci; 2003 Jul; 19(4):281-9. PubMed ID: 12885393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of different feed frame components on the powder behavior and the residence time distribution with regard to the continuous manufacturing of tablets.
    Dülle M; Özcoban H; Leopold CS
    Int J Pharm; 2019 Jan; 555():220-227. PubMed ID: 30419296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the powder behavior and the residence time distribution within a production scale rotary tablet press.
    Dülle M; Özcoban H; Leopold CS
    Eur J Pharm Sci; 2018 Dec; 125():205-214. PubMed ID: 30312745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utility of Microcrystalline Cellulose for Improving Drug Content Uniformity in Tablet Manufacturing Using Direct Powder Compression.
    Nakamura S; Tanaka C; Yuasa H; Sakamoto T
    AAPS PharmSciTech; 2019 Mar; 20(4):151. PubMed ID: 30903317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a novel tablet machine for a tiny amount of powder and evaluation of capping tendency.
    Nakamura H; Sugino Y; Iwasaki T; Watano S
    Chem Pharm Bull (Tokyo); 2011; 59(12):1518-22. PubMed ID: 22130374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.