These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30895514)

  • 21. Hybrid Closed-Loop Insulin Delivery in Type 1 Diabetes During Supervised Outpatient Conditions.
    Grosman B; Ilany J; Roy A; Kurtz N; Wu D; Parikh N; Voskanyan G; Konvalina N; Mylonas C; Gottlieb R; Kaufman F; Cohen O
    J Diabetes Sci Technol; 2016 May; 10(3):708-13. PubMed ID: 26880389
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Incorporating Prior Information in Adaptive Model Predictive Control for Multivariable Artificial Pancreas Systems.
    Sun X; Rashid M; Hobbs N; Brandt R; Askari MR; Cinar A
    J Diabetes Sci Technol; 2022 Jan; 16(1):19-28. PubMed ID: 34861777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clinical results of an automated artificial pancreas using technosphere inhaled insulin to mimic first-phase insulin secretion.
    Zisser H; Dassau E; Lee JJ; Harvey RA; Bevier W; Doyle FJ
    J Diabetes Sci Technol; 2015 May; 9(3):564-72. PubMed ID: 25901023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multicenter outpatient dinner/overnight reduction of hypoglycemia and increased time of glucose in target with a wearable artificial pancreas using modular model predictive control in adults with type 1 diabetes.
    Del Favero S; Place J; Kropff J; Messori M; Keith-Hynes P; Visentin R; Monaro M; Galasso S; Boscari F; Toffanin C; Di Palma F; Lanzola G; Scarpellini S; Farret A; Kovatchev B; Avogaro A; Bruttomesso D; Magni L; DeVries JH; Cobelli C; Renard E;
    Diabetes Obes Metab; 2015 May; 17(5):468-76. PubMed ID: 25600304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using an Online Disturbance Rejection and Anticipation System to Reduce Hyperglycemia in a Fully Closed-Loop Artificial Pancreas System.
    Corbett JP; Garcia-Tirado J; Colmegna P; Diaz Castaneda JL; Breton MD
    J Diabetes Sci Technol; 2022 Jan; 16(1):52-60. PubMed ID: 34861786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Economic Model Predictive Control of Bihormonal Artificial Pancreas System Based on Switching Control and Dynamic R-parameter.
    Tang F; Wang Y
    J Diabetes Sci Technol; 2017 Nov; 11(6):1112-1123. PubMed ID: 28728434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated Insulin Delivery-The Light at the End of the Tunnel.
    Turksoy K; Frantz N; Quinn L; Dumin M; Kilkus J; Hibner B; Cinar A; Littlejohn E
    J Pediatr; 2017 Jul; 186():17-28.e9. PubMed ID: 28396030
    [No Abstract]   [Full Text] [Related]  

  • 28. Artificial Pancreas: Clinical Study in Latin America Without Premeal Insulin Boluses.
    Sánchez-Peña R; Colmegna P; Garelli F; De Battista H; García-Violini D; Moscoso-Vásquez M; Rosales N; Fushimi E; Campos-Náñez E; Breton M; Beruto V; Scibona P; Rodriguez C; Giunta J; Simonovich V; Belloso WH; Cherñavvsky D; Grosembacher L
    J Diabetes Sci Technol; 2018 Sep; 12(5):914-925. PubMed ID: 29998754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stress Testing of an Artificial Pancreas System With Pizza and Exercise Leads to Improvements in the System's Fuzzy Logic Controller.
    Mauseth R; Lord SM; Hirsch IB; Kircher RC; Matheson DP; Greenbaum CJ
    J Diabetes Sci Technol; 2015 Sep; 9(6):1253-9. PubMed ID: 26370244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of dual-hormone artificial pancreas, single-hormone artificial pancreas, and conventional insulin pump therapy for glycaemic control in patients with type 1 diabetes: an open-label randomised controlled crossover trial.
    Haidar A; Legault L; Messier V; Mitre TM; Leroux C; Rabasa-Lhoret R
    Lancet Diabetes Endocrinol; 2015 Jan; 3(1):17-26. PubMed ID: 25434967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas.
    Weinzimer SA; Steil GM; Swan KL; Dziura J; Kurtz N; Tamborlane WV
    Diabetes Care; 2008 May; 31(5):934-9. PubMed ID: 18252903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Perioperative Considerations for Evolving Artificial Pancreas Devices.
    Long MT; Coursin DB; Rice MJ
    Anesth Analg; 2019 May; 128(5):902-906. PubMed ID: 30198923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward a Fully Automated Artificial Pancreas System Using a Bioinspired Reinforcement Learning Design: In Silico Validation.
    Lee S; Kim J; Park SW; Jin SM; Park SM
    IEEE J Biomed Health Inform; 2021 Feb; 25(2):536-546. PubMed ID: 32750935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automatic bolus and adaptive basal algorithm for the artificial pancreatic β-cell.
    Wang Y; Dassau E; Zisser H; Jovanovič L; Doyle FJ
    Diabetes Technol Ther; 2010 Nov; 12(11):879-87. PubMed ID: 20879966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Closed-Loop Control Without Meal Announcement in Type 1 Diabetes.
    Cameron FM; Ly TT; Buckingham BA; Maahs DM; Forlenza GP; Levy CJ; Lam D; Clinton P; Messer LH; Westfall E; Levister C; Xie YY; Baysal N; Howsmon D; Patek SD; Bequette BW
    Diabetes Technol Ther; 2017 Sep; 19(9):527-532. PubMed ID: 28767276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An ensemble machine learning approach for the detection of unannounced meals to enhance postprandial glucose control.
    Ibrahim M; Beneyto A; Contreras I; Vehi J
    Comput Biol Med; 2024 Mar; 171():108154. PubMed ID: 38382387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of Accelerating Insulin on an Artificial Pancreas System Without Meal Announcement: An In Silico Examination.
    Colmegna P; Cengiz E; Garcia-Tirado J; Kraemer K; Breton MD
    J Diabetes Sci Technol; 2021 Jul; 15(4):833-841. PubMed ID: 32546001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An iterative learning strategy for the auto-tuning of the feedforward and feedback controller in type-1 diabetes.
    Fravolini ML; Fabietti PG
    Comput Methods Biomech Biomed Engin; 2014; 17(13):1464-82. PubMed ID: 23282162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated hybrid closed-loop control with a proportional-integral-derivative based system in adolescents and adults with type 1 diabetes: individualizing settings for optimal performance.
    Ly TT; Weinzimer SA; Maahs DM; Sherr JL; Roy A; Grosman B; Cantwell M; Kurtz N; Carria L; Messer L; von Eyben R; Buckingham BA
    Pediatr Diabetes; 2017 Aug; 18(5):348-355. PubMed ID: 27191182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic glycemic regulation for the pediatric population based on switched control and time-varying IOB constraints: an in silico study.
    Fushimi E; Serafini MC; De Battista H; Garelli F
    Med Biol Eng Comput; 2020 Oct; 58(10):2325-2337. PubMed ID: 32710375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.