These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

603 related articles for article (PubMed ID: 30895704)

  • 1. Glioma grading using a machine-learning framework based on optimized features obtained from T
    Sengupta A; Ramaniharan AK; Gupta RK; Agarwal S; Singh A
    J Magn Reson Imaging; 2019 Oct; 50(4):1295-1306. PubMed ID: 30895704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiomics strategy for glioma grading using texture features from multiparametric MRI.
    Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB
    J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing Texture Retrieving Model for Multimodal MR Image-Based Support Vector Machine for Classifying Glioma.
    Yang Y; Yan LF; Zhang X; Nan HY; Hu YC; Han Y; Zhang J; Liu ZC; Sun YZ; Tian Q; Yu Y; Sun Q; Wang SY; Zhang X; Wang W; Cui GB
    J Magn Reson Imaging; 2019 May; 49(5):1263-1274. PubMed ID: 30623514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On differentiation between vasogenic edema and non-enhancing tumor in high-grade glioma patients using a support vector machine classifier based upon pre and post-surgery MRI images.
    Sengupta A; Agarwal S; Gupta PK; Ahlawat S; Patir R; Gupta RK; Singh A
    Eur J Radiol; 2018 Sep; 106():199-208. PubMed ID: 30150045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative vs. semiquantitative assessment of intratumoral susceptibility signals in patients with different grades of glioma.
    Bhattacharjee R; Gupta RK; Patir R; Vaishya S; Ahlawat S; Singh A
    J Magn Reson Imaging; 2020 Jan; 51(1):225-233. PubMed ID: 31087724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading.
    Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I
    Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Textural features of dynamic contrast-enhanced MRI derived model-free and model-based parameter maps in glioma grading.
    Xie T; Chen X; Fang J; Kang H; Xue W; Tong H; Cao P; Wang S; Yang Y; Zhang W
    J Magn Reson Imaging; 2018 Apr; 47(4):1099-1111. PubMed ID: 28845594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features.
    Zhang X; Yan LF; Hu YC; Li G; Yang Y; Han Y; Sun YZ; Liu ZC; Tian Q; Han ZY; Liu LD; Hu BQ; Qiu ZY; Wang W; Cui GB
    Oncotarget; 2017 Jul; 8(29):47816-47830. PubMed ID: 28599282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating feasibility of high resolution T1-perfusion MRI with whole brain coverage using compressed SENSE: Application to glioma grading.
    Sasi S D; Ramaniharan AK; Bhattacharjee R; Gupta RK; Saha I; Van Cauteren M; Shah T; Gopalakrishnan K; Gupta A; Singh A
    Eur J Radiol; 2020 Aug; 129():109049. PubMed ID: 32464580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading.
    Inano R; Oishi N; Kunieda T; Arakawa Y; Yamao Y; Shibata S; Kikuchi T; Fukuyama H; Miyamoto S
    Neuroimage Clin; 2014; 5():396-407. PubMed ID: 25180159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging.
    Hashido T; Saito S; Ishida T
    J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of Glioma Grading With Inflow-Based Vascular-Space-Occupancy MRI: A Preliminary Study at 3T.
    Li X; Liao S; Hua J; Guo L; Wang D; Xiao X; Zhou J; Liu X; Tan Y; Lu L; Xu Y; Wu Y
    J Magn Reson Imaging; 2019 Dec; 50(6):1817-1823. PubMed ID: 30932289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of grade II/III and grade IV glioma by combining "T1 contrast-enhanced brain perfusion imaging" and susceptibility-weighted quantitative imaging.
    Saini J; Gupta PK; Sahoo P; Singh A; Patir R; Ahlawat S; Beniwal M; Thennarasu K; Santosh V; Gupta RK
    Neuroradiology; 2018 Jan; 60(1):43-50. PubMed ID: 29090331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glioma Tumor Grading Using Radiomics on Conventional MRI: A Comparative Study of WHO 2021 and WHO 2016 Classification of Central Nervous Tumors.
    Moodi F; Khodadadi Shoushtari F; Ghadimi DJ; Valizadeh G; Khormali E; Salari HM; Ohadi MAD; Nilipour Y; Jahanbakhshi A; Rad HS
    J Magn Reson Imaging; 2024 Sep; 60(3):923-938. PubMed ID: 38031466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glioma: Application of histogram analysis of pharmacokinetic parameters from T1-weighted dynamic contrast-enhanced MR imaging to tumor grading.
    Jung SC; Yeom JA; Kim JH; Ryoo I; Kim SC; Shin H; Lee AL; Yun TJ; Park CK; Sohn CH; Park SH; Choi SH
    AJNR Am J Neuroradiol; 2014 Jun; 35(6):1103-10. PubMed ID: 24384119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors.
    Park YW; Choi YS; Ahn SS; Chang JH; Kim SH; Lee SK
    Korean J Radiol; 2019 Sep; 20(9):1381-1389. PubMed ID: 31464116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of active and infiltrative tumorous subregions from normal tissue in brain gliomas using multiparametric MRI.
    Fathi Kazerooni A; Nabil M; Zeinali Zadeh M; Firouznia K; Azmoudeh-Ardalan F; Frangi AF; Davatzikos C; Saligheh Rad H
    J Magn Reson Imaging; 2018 Oct; 48(4):938-950. PubMed ID: 29412496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of High-Grade Glioma into Tumor and Nontumor Components Using Support Vector Machine.
    Blumenthal DT; Artzi M; Liberman G; Bokstein F; Aizenstein O; Ben Bashat D
    AJNR Am J Neuroradiol; 2017 May; 38(5):908-914. PubMed ID: 28385884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated PET-MRI for Glioma Surveillance: Perfusion-Metabolism Discordance Rate and Association With Molecular Profiling.
    Seligman L; Kovanlikaya I; Pisapia DJ; Naeger DM; Magge R; Fine HA; Chiang GC
    AJR Am J Roentgenol; 2019 Apr; 212(4):883-891. PubMed ID: 30779663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis.
    Artzi M; Bressler I; Ben Bashat D
    J Magn Reson Imaging; 2019 Aug; 50(2):519-528. PubMed ID: 30635952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.