These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
3. Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering. Gao X; Song J; Ji P; Zhang X; Li X; Xu X; Wang M; Zhang S; Deng Y; Deng F; Wei S ACS Appl Mater Interfaces; 2016 Feb; 8(5):3499-515. PubMed ID: 26756224 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. Ye K; Liu D; Kuang H; Cai J; Chen W; Sun B; Xia L; Fang B; Morsi Y; Mo X J Colloid Interface Sci; 2019 Jan; 534():625-636. PubMed ID: 30265990 [TBL] [Abstract][Full Text] [Related]
5. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285 [TBL] [Abstract][Full Text] [Related]
6. Biomimetic Mineralized Hydroxyapatite-Fish-Scale Collagen/Chitosan Nanofibrous Membranes Promote Osteogenesis for Periodontal Tissue Regeneration. Li M; Cheng G; Xiao S; Jiang B; Guo S; Ding Y ACS Biomater Sci Eng; 2024 Aug; 10(8):5108-5121. PubMed ID: 38996181 [TBL] [Abstract][Full Text] [Related]
7. Multifunctional bilayer nanofibrous membrane enhances periodontal regeneration via mesenchymal stem cell recruitment and macrophage polarization. Wang S; Li C; Chen S; Jia W; Liu L; Liu Y; Yang Y; Jiao K; Yan Y; Cheng Z; Liu G; Liu Z; Luo Y Int J Biol Macromol; 2024 Jul; 273(Pt 1):132924. PubMed ID: 38866282 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous nano- and microscale structural control of injectable hydrogels via the assembly of nanofibrous protein microparticles for tissue regeneration. Hou S; Niu X; Li L; Zhou J; Qian Z; Yao D; Yang F; Ma PX; Fan Y Biomaterials; 2019 Dec; 223():119458. PubMed ID: 31491598 [TBL] [Abstract][Full Text] [Related]
10. Electrospun PLGA/PCL/OCP nanofiber membranes promote osteogenic differentiation of mesenchymal stem cells (MSCs). Wang Z; Liang R; Jiang X; Xie J; Cai P; Chen H; Zhan X; Lei D; Zhao J; Zheng L Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109796. PubMed ID: 31500029 [TBL] [Abstract][Full Text] [Related]
11. Biomaterials for periodontal regeneration: a review of ceramics and polymers. Shue L; Yufeng Z; Mony U Biomatter; 2012; 2(4):271-7. PubMed ID: 23507891 [TBL] [Abstract][Full Text] [Related]
12. Development of biomimetic trilayer fibrous membranes for guided bone regeneration. Sun F; Chen J; Jin S; Wang J; Man Y; Li J; Zou Q; Li Y; Zuo Y J Mater Chem B; 2019 Jan; 7(4):665-675. PubMed ID: 32254799 [TBL] [Abstract][Full Text] [Related]
13. In situ gold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications: in vitro and in vivo studies. Lee SJ; Lee HJ; Kim SY; Seok JM; Lee JH; Kim WD; Kwon IK; Park SY; Park SA Nanoscale; 2018 Aug; 10(33):15447-15453. PubMed ID: 30091763 [TBL] [Abstract][Full Text] [Related]
14. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells. Gandhimathi C; Venugopal JR; Tham AY; Ramakrishna S; Kumar SD Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():776-785. PubMed ID: 25687008 [TBL] [Abstract][Full Text] [Related]
15. Effective immobilization of BMP-2 mediated by polydopamine coating on biodegradable nanofibers for enhanced in vivo bone formation. Cho HJ; Perikamana SK; Lee JH; Lee J; Lee KM; Shin CS; Shin H ACS Appl Mater Interfaces; 2014 Jul; 6(14):11225-35. PubMed ID: 24942379 [TBL] [Abstract][Full Text] [Related]
16. GBR membrane of novel poly (butylene succinate-co-glycolate) co-polyester co-polymer for periodontal application. Pajoumshariati S; Shirali H; Yavari SK; Sheikholeslami SN; Lotfi G; Mashhadi Abbas F; Abbaspourrad A Sci Rep; 2018 May; 8(1):7513. PubMed ID: 29760507 [TBL] [Abstract][Full Text] [Related]
17. Development of Bi- and Tri-Layer Nanofibrous Membranes Based on the Sulfated Polysaccharide Carrageenan for Periodontal Tissue Regeneration. Kikionis S; Iliou K; Karra AG; Polychronis G; Choinopoulos I; Iatrou H; Eliades G; Kitraki E; Tseti I; Zinelis S; Ioannou E; Roussis V Mar Drugs; 2023 Oct; 21(11):. PubMed ID: 37999389 [TBL] [Abstract][Full Text] [Related]
18. Bi-layered electrospun nanofibrous membrane with osteogenic and antibacterial properties for guided bone regeneration. Lian M; Sun B; Qiao Z; Zhao K; Zhou X; Zhang Q; Zou D; He C; Zhang X Colloids Surf B Biointerfaces; 2019 Apr; 176():219-229. PubMed ID: 30623809 [TBL] [Abstract][Full Text] [Related]
19. Emulsion electrospun PLA/calcium alginate nanofibers for periodontal tissue engineering. Ye Z; Xu W; Shen R; Yan Y J Biomater Appl; 2020 Jan; 34(6):763-777. PubMed ID: 31506032 [No Abstract] [Full Text] [Related]
20. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis. Cheng CH; Chen YW; Kai-Xing Lee A; Yao CH; Shie MY J Mater Sci Mater Med; 2019 Jun; 30(7):78. PubMed ID: 31222566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]