BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30895796)

  • 21. Plasmonic chiral contrast agents for optical coherence tomography: numerical study.
    Mehta KB; Chen N
    Opt Express; 2011 Aug; 19(16):14903-12. PubMed ID: 21934851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo photothermal optical coherence tomography of endogenous and exogenous contrast agents in the eye.
    Lapierre-Landry M; Gordon AY; Penn JS; Skala MC
    Sci Rep; 2017 Aug; 7(1):9228. PubMed ID: 28835698
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Speckle-modulating optical coherence tomography in living mice and humans.
    Liba O; Lew MD; SoRelle ED; Dutta R; Sen D; Moshfeghi DM; Chu S; de la Zerda A
    Nat Commun; 2017 Jun; 8():15845. PubMed ID: 28632205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo.
    Kah JC; Olivo M; Chow TH; Song KS; Koh KZ; Mhaisalkar S; Sheppard CJ
    J Biomed Opt; 2009; 14(5):054015. PubMed ID: 19895117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of pH-induced aggregation of "smart" gold nanoparticles with photothermal optical coherence tomography.
    Xiao P; Li Q; Joo Y; Nam J; Hwang S; Song J; Kim S; Joo C; Kim KH
    Opt Lett; 2013 Nov; 38(21):4429-32. PubMed ID: 24177111
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tomographic imaging of a suspending single live cell using optical tweezer-combined full-field optical coherence tomography.
    Choi WJ; Park KS; Eom TJ; Oh MK; Lee BH
    Opt Lett; 2012 Jul; 37(14):2784-6. PubMed ID: 22825133
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmon Resonant Silica-Coated Silver Nanoplates as Contrast agents for Optical Coherence Tomography.
    Meleppat RK; Prabhathan P; Keey SL; Matham MV
    J Biomed Nanotechnol; 2016 Oct; 12(10):1929-37. PubMed ID: 29360336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical coherence tomography with plasmon resonant nanorods of gold.
    Troutman TS; Barton JK; Romanowski M
    Opt Lett; 2007 Jun; 32(11):1438-40. PubMed ID: 17546147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ gold nanoparticles formation: contrast agent for dental optical coherence tomography.
    Braz AK; de Araujo RE; Ohulchanskyy TY; Shukla S; Bergey EJ; Gomes AS; Prasad PN
    J Biomed Opt; 2012 Jun; 17(6):066003. PubMed ID: 22734759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gold nanorods-bombesin conjugate as a potential targeted imaging agent for detection of breast cancer.
    Heidari Z; Sariri R; Salouti M
    J Photochem Photobiol B; 2014 Jan; 130():40-6. PubMed ID: 24300991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective X-ray contrast enhancement of the spleen of living mice mediated by gold nanorods.
    Wathen CA; Caldwell C; Chanda N; Upendran A; Zambre A; Afrasiabi Z; Chapaman SE; Foje N; Leevy WM; Kannan R
    Contrast Media Mol Imaging; 2015; 10(3):188-93. PubMed ID: 25169942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging.
    Kuo WS; Chang CN; Chang YT; Yang MH; Chien YH; Chen SJ; Yeh CS
    Angew Chem Int Ed Engl; 2010 Apr; 49(15):2711-5. PubMed ID: 20235255
    [No Abstract]   [Full Text] [Related]  

  • 33. Optical detection of atherosclerosis at molecular level by optical coherence tomography: An in vitro study.
    Muñoz-Ortiz T; Hu J; Sanz-Rodríguez F; Ortgies DH; Jaque D; Méndez-González D; Aguilar R; Alfonso F; Rivero F; Martín Rodríguez E; García Solé J
    Nanomedicine; 2022 Jul; 43():102556. PubMed ID: 35390527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic single gold nanoparticle visualization by clinical intracoronary optical coherence tomography.
    Hu J; Rivero F; Torres RA; Loro Ramírez H; Rodríguez EM; Alfonso F; García Solé J; Jaque D
    J Biophotonics; 2017 May; 10(5):674-682. PubMed ID: 27273138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic Field-Modulated Plasmonic Scattering of Hybrid Nanorods for FFT-Weighted OCT Imaging in NIR-II.
    Li Z; Poon W; Ye Z; Qi F; Park BH; Yin Y
    ACS Nano; 2022 Aug; 16(8):12738-12746. PubMed ID: 35925674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectroscopic Photoacoustic Imaging of Gold Nanorods.
    Namen AV; Luke GP
    Methods Mol Biol; 2017; 1570():179-194. PubMed ID: 28238137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography.
    Pires L; Demidov V; Vitkin IA; Bagnato V; Kurachi C; Wilson BC
    J Biomed Opt; 2016 Aug; 21(8):081210. PubMed ID: 27300502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements.
    Ankri R; Leshem-Lev D; Fixler D; Popovtzer R; Motiei M; Kornowski R; Hochhauser E; Lev EI
    Nano Lett; 2014 May; 14(5):2681-7. PubMed ID: 24697682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Upconversion optical/magnetic resonance imaging-guided small tumor detection and in vivo tri-modal bioimaging based on high-performance luminescent nanorods.
    Xue Z; Yi Z; Li X; Li Y; Jiang M; Liu H; Zeng S
    Biomaterials; 2017 Jan; 115():90-103. PubMed ID: 27886557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-Time Optoacoustic Tracking of Single Moving Micro-objects in Deep Phantom and Ex Vivo Tissues.
    Aziz A; Medina-Sánchez M; Claussen J; Schmidt OG
    Nano Lett; 2019 Sep; 19(9):6612-6620. PubMed ID: 31411038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.