BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 3089592)

  • 41. Clinical observations on adoptive immunotherapy with vaccine-primed T-lymphocytes secondarily sensitized to tumor in vitro.
    Chang AE; Yoshizawa H; Sakai K; Cameron MJ; Sondak VK; Shu S
    Cancer Res; 1993 Mar; 53(5):1043-50. PubMed ID: 8439951
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vivo antitumor activity of tumor-infiltrating lymphocytes expanded in recombinant interleukin-2.
    Spiess PJ; Yang JC; Rosenberg SA
    J Natl Cancer Inst; 1987 Nov; 79(5):1067-75. PubMed ID: 3500355
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Human lymphokine-activated killer (LAK) cells: identification of two types of effector cells.
    Tilden AB; Itoh K; Balch CM
    J Immunol; 1987 Feb; 138(4):1068-73. PubMed ID: 3100627
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Allogeneic cell therapy in murine B-cell leukemia (BCL1): 2. The role of non-activated and rIL-2-activated CD4+ and CD8+ T cells in immunotherapy for leukemia.
    Weiss L; Reich S; Slavin S
    Cytokines Cell Mol Ther; 1999 Sep; 5(3):153-8. PubMed ID: 10641573
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interleukin 2 expanded tumor-infiltrating lymphocytes in human renal cell cancer: isolation, characterization, and antitumor activity.
    Belldegrun A; Muul LM; Rosenberg SA
    Cancer Res; 1988 Jan; 48(1):206-14. PubMed ID: 3257161
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lymphokine-activated killer cells: in vitro and in vivo studies.
    Mazumder A
    Lymphokine Res; 1985; 4(3):215-20. PubMed ID: 3897730
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Type 1 CD8+ T cells are superior to type 2 CD8+ T cells in tumor immunotherapy due to their efficient cytotoxicity, prolonged survival and type 1 immune modulation.
    Ye Z; Tang C; Xu S; Zhang B; Zhang X; Moyana T; Yang J; Xiang J
    Cell Mol Immunol; 2007 Aug; 4(4):277-85. PubMed ID: 17764618
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid killing of actinomycin D-treated tumor cells by human mononuclear cells. I. Effectors belong to the monocyte-macrophage lineage.
    Colotta F; Peri G; Villa A; Mantovani A
    J Immunol; 1984 Feb; 132(2):936-44. PubMed ID: 6690624
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of the involvement of cells from donor and recipient mice in adoptive transfer of antitumor immunity.
    Lee FH; Currie D; Hwang KM
    Cancer Res; 1984 Dec; 44(12 Pt 1):5491-8. PubMed ID: 6208997
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lymphocytes infiltrating ovarian carcinoma: modulation of functional activity by intraperitoneal treatment with biological response modifiers.
    Allavena P; Peri G; Di Bello M; Peccatori F; Chiaffarino F; Pirovano P; Mantovani A
    Nat Immun Cell Growth Regul; 1988; 7(4):230-8. PubMed ID: 3070372
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Effects of lymphokine-activated killer cells and interleukin-2 on the ascites formation and the survival time of nude mice bearing human ovarian cancer cells].
    Kikuchi Y; Oomori K; Miyauchi M; Kita T; Kuki E; Iwano I; Hirata J; Nagata I
    Nihon Sanka Fujinka Gakkai Zasshi; 1989 Dec; 41(12):1891-5. PubMed ID: 2592812
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Effect of lymphokine activated killer from umbilical blood on human ovarian cancer in nude mouse models].
    He YD; Peng ZL; Liu SL; Wang H; Pan XL
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2007 Sep; 38(5):810-2. PubMed ID: 17953364
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tumor-infiltrating lymphocytes: evidence for specific immune reactions against growing cancers in mice and humans.
    Topalian SL; Rosenberg SA
    Important Adv Oncol; 1990; ():19-41. PubMed ID: 2182519
    [No Abstract]   [Full Text] [Related]  

  • 54. Ovarian tumor antigens: a new potential for therapy.
    Order SE; Thurnston J; Knapp R
    Natl Cancer Inst Monogr; 1975 Oct; 42():33-43. PubMed ID: 1234634
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adoptive immunotherapy of epithelial ovarian cancer with Vγ9Vδ2 T cells, potentiated by liposomal alendronic acid.
    Parente-Pereira AC; Shmeeda H; Whilding LM; Zambirinis CP; Foster J; van der Stegen SJ; Beatson R; Zabinski T; Brewig N; Sosabowski JK; Mather S; Ghaem-Maghami S; Gabizon A; Maher J
    J Immunol; 2014 Dec; 193(11):5557-66. PubMed ID: 25339667
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adoptive immunotherapy of solid tumors with activated macrophages: experimental and clinical results.
    Bartholeyns J; Lopez M; Andreesen R
    Anticancer Res; 1991; 11(3):1201-4. PubMed ID: 1888150
    [TBL] [Abstract][Full Text] [Related]  

  • 57. "Lymphokine activated killing" as treatment for human cancer: clinical extrapolations from laboratory studies with interleukin-2 expanded leukocytes.
    Sondel PM; Hank JA; Kohler PC; Chen BP; Sosman J
    Prog Clin Biol Res; 1989; 288():151-60. PubMed ID: 2654949
    [No Abstract]   [Full Text] [Related]  

  • 58. Effector mechanisms by which adoptively transferred T cells promote tumor eradication.
    Greenberg PD; Kern DE; Jensen MC; Klarnet JP; Cheever MA
    Prog Clin Biol Res; 1987; 244():127-35. PubMed ID: 2958868
    [No Abstract]   [Full Text] [Related]  

  • 59. Adoptive immunotherapy of murine mammary carcinoma using broadly cytotoxic cloned T lymphocytes.
    Salup RR; Toth JA; Hiserodt JC; Wolmark N
    Prog Clin Biol Res; 1987; 244():39-48. PubMed ID: 2958875
    [No Abstract]   [Full Text] [Related]  

  • 60. [Effect of natural killer cell line NK-92 against human ovarian carcinoma cells in vitro and in vivo].
    Chen G; Ling B; Zhu HP; Zhao WD; Wang QH; Zhang HY; Wu AD; Wei HM; Tian ZG
    Zhonghua Fu Chan Ke Za Zhi; 2005 Jul; 40(7):476-9. PubMed ID: 16080876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.