These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 30896038)
1. Photo-reducible plastoquinone pools in chloroplasts of Tradescentia plants acclimated to high and low light. Suslichenko IS; Tikhonov AN FEBS Lett; 2019 Apr; 593(8):788-798. PubMed ID: 30896038 [TBL] [Abstract][Full Text] [Related]
2. Electron transport in Tradescantia leaves acclimated to high and low light: thermoluminescence, PAM-fluorometry, and EPR studies. Kalmatskaya OA; Trubitsin BV; Suslichenko IS; Karavaev VA; Tikhonov AN Photosynth Res; 2020 Dec; 146(1-3):123-141. PubMed ID: 32594291 [TBL] [Abstract][Full Text] [Related]
3. Acclimation of tobacco leaves to high light intensity drives the plastoquinone oxidation system--relationship among the fraction of open PSII centers, non-photochemical quenching of Chl fluorescence and the maximum quantum yield of PSII in the dark. Miyake C; Amako K; Shiraishi N; Sugimoto T Plant Cell Physiol; 2009 Apr; 50(4):730-43. PubMed ID: 19251745 [TBL] [Abstract][Full Text] [Related]
4. Light intensity dependent photosynthetic electron transport in eelgrass (Zostera marina L.). Yang XQ; Zhang QS; Zhang D; Sheng ZT Plant Physiol Biochem; 2017 Apr; 113():168-176. PubMed ID: 28236752 [TBL] [Abstract][Full Text] [Related]
5. Acclimation of shade-tolerant and light-resistant Tradescantia species to growth light: chlorophyll a fluorescence, electron transport, and xanthophyll content. Mishanin VI; Trubitsin BV; Patsaeva SV; Ptushenko VV; Solovchenko AE; Tikhonov AN Photosynth Res; 2017 Sep; 133(1-3):87-102. PubMed ID: 28176042 [TBL] [Abstract][Full Text] [Related]
6. Plastoquinone homeostasis in plant acclimation to light intensity. Ksas B; Alric J; Caffarri S; Havaux M Photosynth Res; 2022 Apr; 152(1):43-54. PubMed ID: 35000138 [TBL] [Abstract][Full Text] [Related]
7. Light acclimation of shade-tolerant and sun-resistant Tradescantia species: photochemical activity of PSII and its sensitivity to heat treatment. Benkov MA; Yatsenko AM; Tikhonov AN Photosynth Res; 2019 Mar; 139(1-3):203-214. PubMed ID: 29926255 [TBL] [Abstract][Full Text] [Related]
9. Photosystem activity and state transitions of the photosynthetic apparatus in cyanobacterium Synechocystis PCC 6803 mutants with different redox state of the plastoquinone pool. Bolychevtseva YV; Kuzminov FI; Elanskaya IV; Gorbunov MY; Karapetyan NV Biochemistry (Mosc); 2015 Jan; 80(1):50-60. PubMed ID: 25754039 [TBL] [Abstract][Full Text] [Related]
10. Light acclimation of shade-tolerant and light-resistant Tradescantia species: induction of chlorophyll a fluorescence and P Mishanin VI; Trubitsin BV; Benkov MA; Minin AA; Tikhonov AN Photosynth Res; 2016 Dec; 130(1-3):275-291. PubMed ID: 27037825 [TBL] [Abstract][Full Text] [Related]
11. Photosystem II-cyclic electron flow powers exceptional photoprotection and record growth in the microalga Chlorella ohadii. Ananyev G; Gates C; Kaplan A; Dismukes GC Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):873-883. PubMed ID: 28734933 [TBL] [Abstract][Full Text] [Related]
12. Action spectrum of the redox state of the plastoquinone pool defines its function in plant acclimation. Mattila H; Khorobrykh S; Hakala-Yatkin M; Havurinne V; Kuusisto I; Antal T; Tyystjärvi T; Tyystjärvi E Plant J; 2020 Nov; 104(4):1088-1104. PubMed ID: 32889743 [TBL] [Abstract][Full Text] [Related]
13. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways. Tikhonov AN Plant Physiol Biochem; 2014 Aug; 81():163-83. PubMed ID: 24485217 [TBL] [Abstract][Full Text] [Related]
14. Oxygen evolution from single- and multiple-turnover light pulses: temporal kinetics of electron transport through PSII in sunflower leaves. Oja V; Eichelmann H; Laisk A Photosynth Res; 2011 Dec; 110(2):99-109. PubMed ID: 22038184 [TBL] [Abstract][Full Text] [Related]
15. Interaction of exogenous quinones with membranes of higher plant chloroplasts: modulation of quinone capacities as photochemical and non-photochemical quenchers of energy in Photosystem II during light-dark transitions. Bukhov NG; Sridharan G; Egorova EA; Carpentier R Biochim Biophys Acta; 2003 Jun; 1604(2):115-23. PubMed ID: 12765768 [TBL] [Abstract][Full Text] [Related]
16. Photosynthetic electron flow regulates transcription of the psaB gene in pea (Pisum sativum L.) chloroplasts through the redox state of the plastoquinone pool. Tullberg A; Alexciev K; Pfannschmidt T; Allen JF Plant Cell Physiol; 2000 Sep; 41(9):1045-54. PubMed ID: 11100777 [TBL] [Abstract][Full Text] [Related]
17. Measurement of the redox state of the plastoquinone pool in cyanobacteria. Khorobrykh S; Tsurumaki T; Tanaka K; Tyystjärvi T; Tyystjärvi E FEBS Lett; 2020 Jan; 594(2):367-375. PubMed ID: 31529488 [TBL] [Abstract][Full Text] [Related]
18. Imaging the Photosystem I/Photosystem II chlorophyll ratio inside the leaf. Wientjes E; Philippi J; Borst JW; van Amerongen H Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):259-265. PubMed ID: 28095301 [TBL] [Abstract][Full Text] [Related]
19. Upregulation of bundle sheath electron transport capacity under limiting light in C Ermakova M; Bellasio C; Fitzpatrick D; Furbank RT; Mamedov F; von Caemmerer S Plant J; 2021 Jun; 106(5):1443-1454. PubMed ID: 33772896 [TBL] [Abstract][Full Text] [Related]
20. Photosynthetic acclimation to drought stress in Agave salmiana Otto ex Salm-Dyck seedlings is largely dependent on thermal dissipation and enhanced electron flux to photosystem I. Campos H; Trejo C; Peña-Valdivia CB; García-Nava R; Conde-Martínez FV; Cruz-Ortega Mdel R Photosynth Res; 2014 Oct; 122(1):23-39. PubMed ID: 24798124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]