These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30896339)

  • 21. Oxidative ring fission of the naphthoquinones lapachol and dichloroallyl lawsone by Penicillium notatum.
    Otten SL; Rosazza JP
    J Biol Chem; 1983 Feb; 258(3):1610-3. PubMed ID: 6822525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Initial oxidative and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi.
    Casillas RP; Crow SA; Heinze TM; Deck J; Cerniglia CE
    J Ind Microbiol; 1996 Apr; 16(4):205-15. PubMed ID: 8652115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biotransformation of industrial tannins by filamentous fungi.
    Prigione V; Spina F; Tigini V; Giovando S; Varese GC
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10361-10375. PubMed ID: 30293196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of Action and Implication of Naphthoquinone as Potent Anti-trypanosomal Drugs.
    Rani R; Sethi K; Gupta S; Varma RS; Kumar R
    Curr Top Med Chem; 2022; 22(25):2087-2105. PubMed ID: 36098414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioprospecting of Novel and Bioactive Metabolites from Endophytic Fungi Isolated from Rubber Tree
    Ding Z; Tao T; Wang L; Zhao Y; Huang H; Zhang D; Liu M; Wang Z; Han J
    J Microbiol Biotechnol; 2019 May; 29(5):731-738. PubMed ID: 31030449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transformations of Some Sesquiterpene Lactones by Filamentous Fungi and Cytotoxic Evaluations.
    Cano-Flores A; Delgado G
    Chem Biodivers; 2017 Oct; 14(10):. PubMed ID: 28649763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lapachol inhibition of DT-diaphorase (NAD(P)H:quinone dehydrogenase).
    Preusch PC
    Biochem Biophys Res Commun; 1986 Jun; 137(2):781-7. PubMed ID: 3089219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new perspective on fungal metabolites: identification of bioactive compounds from fungi using zebrafish embryogenesis as read-out.
    Hoeksma J; Misset T; Wever C; Kemmink J; Kruijtzer J; Versluis K; Liskamp RMJ; Boons GJ; Heck AJR; Boekhout T; den Hertog J
    Sci Rep; 2019 Nov; 9(1):17546. PubMed ID: 31772307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antibacterial activity of Tabebuia impetiginosa Martius ex DC (Taheebo) against Helicobacter pylori.
    Park BS; Lee HK; Lee SE; Piao XL; Takeoka GR; Wong RY; Ahn YJ; Kim JH
    J Ethnopharmacol; 2006 Apr; 105(1-2):255-62. PubMed ID: 16359837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of lapachol in the presence of other naphthoquinones using 3MPA-CdTe quantum dots fluorescent probe.
    Aucélio RQ; Peréz-Cordovés AI; Xavier Lima JL; Ferreira AB; Esteva Guas AM; da Silva AR
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 100():155-60. PubMed ID: 22591798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial models of drug metabolism: microbial transformations of Trimegestone (RU27987), a 3-keto-delta(4,9(10))-19-norsteroid drug.
    Lacroix I; Biton J; Azerad R
    Bioorg Med Chem; 1999 Nov; 7(11):2329-41. PubMed ID: 10632043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biotransformation of monoterpenoids and their antimicrobial activities.
    Bhatti HN; Khan SS; Khan A; Rani M; Ahmad VU; Choudhary MI
    Phytomedicine; 2014 Oct; 21(12):1597-626. PubMed ID: 25442268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial biotransformation of bioactive and clinically useful steroids and some salient features of steroids and biotransformation.
    Sultana N
    Steroids; 2018 Aug; 136():76-92. PubMed ID: 29360535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of Secondary Metabolites from Plant Endophytic Fungi.
    Liu J; Liu G
    Methods Mol Biol; 2018; 1848():25-38. PubMed ID: 30182226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fungal biocatalysts for labdane diterpene hydroxylation.
    Cruz de Carvalho T; de Oliveira Silva E; Soares GA; Parreira RLT; Ambrósio SR; Jacometti Cardoso Furtado NA
    Bioprocess Biosyst Eng; 2020 Jun; 43(6):1051-1059. PubMed ID: 32020446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biotransformation of protriptyline by filamentous fungi and yeasts.
    Duhart BT; Zhang D; Deck J; Freeman JP; Cerniglia CE
    Xenobiotica; 1999 Jul; 29(7):733-46. PubMed ID: 10456691
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biotransformation of 1-naphthol by a strictly aquatic fungus.
    Augustin T; Schlosser D; Baumbach R; Schmidt J; Grancharov K; Krauss G; Krauss GJ
    Curr Microbiol; 2006 Mar; 52(3):216-20. PubMed ID: 16479357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel mechanisms of biotransformation of p-tert-amylphenol by bacteria and fungi with special degradation abilities and simultaneous detoxification of the disinfectant.
    Schlueter R; Röder A; Czekalski N; Gliesche D; Mikolasch A; Schauer F
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):373-84. PubMed ID: 24158734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lapachol acetylglycosylation enhances its cytotoxic and pro-apoptotic activities in HL60 cells.
    Marques LB; Ottoni FM; Pinto MCX; Ribeiro JM; de Sousa FS; Weinlich R; de Victo NC; Kisitu J; Holzer AK; Leist M; Alves RJ; Souza-Fagundes EM
    Toxicol In Vitro; 2020 Jun; 65():104772. PubMed ID: 31935485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation.
    Wu C; Zacchetti B; Ram AF; van Wezel GP; Claessen D; Hae Choi Y
    Sci Rep; 2015 Jun; 5():10868. PubMed ID: 26040782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.