BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30896691)

  • 1. A template-assisted strategy to synthesize a dilute CoNi alloy incorporated into ultramicroporous carbon for high performance supercapacitor application.
    Jiang Y; Wang Y; Zeng D; Wang Y; Ma Y; Wang H; Zhang X; Dai X
    Dalton Trans; 2019 Apr; 48(14):4702-4711. PubMed ID: 30896691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A "One-Pot" Route for the Synthesis of Snowflake-like Dendritic CoNi Alloy-Reduced Graphene Oxide-Based Multifunctional Nanocomposites: An Efficient Magnetically Separable Versatile Catalyst and Electrode Material for High-Performance Supercapacitors.
    Makkar P; Chandel M; Patra MK; Ghosh NN
    ACS Omega; 2019 Dec; 4(24):20672-20689. PubMed ID: 31858053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room temperature and aqueous synthesis of bimetallic ZIF derived CoNi layered double hydroxides and their applications in asymmetric supercapacitors.
    Tahir MU; Arshad H; Zhang H; Hou Z; Wang J; Yang C; Su X
    J Colloid Interface Sci; 2020 Nov; 579():195-204. PubMed ID: 32590160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational design of cobalt-nickel double hydroxides for flexible asymmetric supercapacitor with improved electrochemical performance.
    Wu Y; Chen H; Lu Y; Yang J; Zhu X; Zheng Y; Lou G; Wu Y; Wu Q; Shen Z; Pan Z
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):455-464. PubMed ID: 32805666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hollow N-Doped Carbon Polyhedron Containing CoNi Alloy Nanoparticles Embedded within Few-Layer N-Doped Graphene as High-Performance Electromagnetic Wave Absorbing Material.
    Zhang X; Yan F; Zhang S; Yuan H; Zhu C; Zhang X; Chen Y
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24920-24929. PubMed ID: 29974737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor.
    Tan Y; Xu C; Chen G; Liu Z; Ma M; Xie Q; Zheng N; Yao S
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2241-8. PubMed ID: 23425031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine-regulating ultramicropores in porous carbon
    Zhao Y; Yuan Y; Xu Y; Zheng G; Zhang Q; Jiang Y; Wang Z; Bu N; Xia L; Yan Z
    Nanoscale; 2021 Jan; 13(3):1961-1969. PubMed ID: 33443258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Honeycomb-like biomass carbon with planted CoNi
    Yue L; Chen L; Liu X; Lu D; Zhou W; Li Y
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2602-2612. PubMed ID: 34772499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CoNi(2)S(4) nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications.
    Hu W; Chen R; Xie W; Zou L; Qin N; Bao D
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19318-26. PubMed ID: 25322454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polytetrafluoroethylene-assisted N/F co-doped hierarchically porous carbon as a high performance electrode for supercapacitors.
    Zhou J; Xu L; Li L; Li X
    J Colloid Interface Sci; 2019 Jun; 545():25-34. PubMed ID: 30861479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CoNi
    Zhang J; Liu X; Yin Q; Zhao Y; Luo J; Han J
    ACS Omega; 2019 Jul; 4(7):11863-11870. PubMed ID: 31460296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D hierarchical porous V
    Hu T; Liu Y; Zhang Y; Chen M; Zheng J; Tang J; Meng C
    J Colloid Interface Sci; 2018 Dec; 531():382-393. PubMed ID: 30041115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soybean Root-Derived Hierarchical Porous Carbon as Electrode Material for High-Performance Supercapacitors in Ionic Liquids.
    Guo N; Li M; Wang Y; Sun X; Wang F; Yang R
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33626-33634. PubMed ID: 27960404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1D-on-1D core-shell cobalt iron selenide @ cobalt nickel carbonate hydroxide hybrid nanowire arrays as advanced battery-type supercapacitor electrode.
    Wan L; Jiang T; Zhang Y; Chen J; Xie M; Du C
    J Colloid Interface Sci; 2022 Sep; 621():149-159. PubMed ID: 35461130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors.
    Zhang Q; Han K; Li S; Li M; Li J; Ren K
    Nanoscale; 2018 Feb; 10(5):2427-2437. PubMed ID: 29335695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile fabrication of Ni
    Wang S; Ma S
    Dalton Trans; 2019 Mar; 48(12):3906-3913. PubMed ID: 30815654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of CoNi high surface area porous foams by substrate controlled electrodeposition.
    Rafailović LD; Gammer C; Rentenberger C; Kleber C; Whitehead AH; Gollas B; Karnthaler HP
    Phys Chem Chem Phys; 2012 Jan; 14(2):972-80. PubMed ID: 22124412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-Pot Template-Free Strategy toward 3D Hierarchical Porous Nitrogen-Doped Carbon Framework in Situ Armored Homogeneous NiO Nanoparticles for High-Performance Asymmetric Supercapacitors.
    Ma L; Sun G; Ran J; Lv S; Shen X; Tong H
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22278-22290. PubMed ID: 29901386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotubes with CoNi alloy nanoparticles growing on porous carbon substrate as cathode for Li-CO
    Ji X; Liu Y; Zhang Z; Cui J; Fan Y; Qiao Y
    J Colloid Interface Sci; 2024 Feb; 655():693-698. PubMed ID: 37976742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bottom-Up Fabrication of Activated Carbon Fiber for All-Solid-State Supercapacitor with Excellent Electrochemical Performance.
    Ma W; Chen S; Yang S; Chen W; Weng W; Zhu M
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14622-7. PubMed ID: 27239680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.