These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 30896721)
1. Identification of the Criegee intermediate reaction network in ethylene ozonolysis: impact on energy conversion strategies and atmospheric chemistry. Rousso AC; Hansen N; Jasper AW; Ju Y Phys Chem Chem Phys; 2019 Apr; 21(14):7341-7357. PubMed ID: 30896721 [TBL] [Abstract][Full Text] [Related]
2. Identification of the acetaldehyde oxide Criegee intermediate reaction network in the ozone-assisted low-temperature oxidation of Conrad AR; Hansen N; Jasper AW; Thomason NK; Hidaldo-Rodrigues L; Treshock SP; Popolan-Vaida DM Phys Chem Chem Phys; 2021 Oct; 23(41):23554-23566. PubMed ID: 34651147 [TBL] [Abstract][Full Text] [Related]
3. Low-Temperature Oxidation of Ethylene by Ozone in a Jet-Stirred Reactor. Rousso AC; Hansen N; Jasper AW; Ju Y J Phys Chem A; 2018 Nov; 122(43):8674-8685. PubMed ID: 30293425 [TBL] [Abstract][Full Text] [Related]
4. Detection and Identification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether. Moshammer K; Jasper AW; Popolan-Vaida DM; Lucassen A; Diévart P; Selim H; Eskola AJ; Taatjes CA; Leone SR; Sarathy SM; Ju Y; Dagaut P; Kohse-Höinghaus K; Hansen N J Phys Chem A; 2015 Jul; 119(28):7361-74. PubMed ID: 25695304 [TBL] [Abstract][Full Text] [Related]
5. Oligomerization reaction of the Criegee intermediate leads to secondary organic aerosol formation in ethylene ozonolysis. Sakamoto Y; Inomata S; Hirokawa J J Phys Chem A; 2013 Dec; 117(48):12912-21. PubMed ID: 24200348 [TBL] [Abstract][Full Text] [Related]
6. Tracking the reaction networks of acetaldehyde oxide and glyoxal oxide Criegee intermediates in the ozone-assisted oxidation reaction of crotonaldehyde. DeCecco AC; Conrad AR; Floyd AM; Jasper AW; Hansen N; Dagaut P; Moody NE; Popolan-Vaida DM Phys Chem Chem Phys; 2024 Aug; 26(34):22319-22336. PubMed ID: 38980126 [TBL] [Abstract][Full Text] [Related]
7. Functionalized Hydroperoxide Formation from the Reaction of Methacrolein-Oxide, an Isoprene-Derived Criegee Intermediate, with Formic Acid: Experiment and Theory. Vansco MF; Zuraski K; Winiberg FAF; Au K; Trongsiriwat N; Walsh PJ; Osborn DL; Percival CJ; Klippenstein SJ; Taatjes CA; Lester MI; Caravan RL Molecules; 2021 May; 26(10):. PubMed ID: 34065491 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the simplest hydroperoxide ester, hydroperoxymethyl formate, a precursor of atmospheric aerosols. Porterfield JP; Lee KLK; Dell'Isola V; Carroll PB; McCarthy MC Phys Chem Chem Phys; 2019 Aug; 21(33):18065-18070. PubMed ID: 31378792 [TBL] [Abstract][Full Text] [Related]
9. Quantification of the Keto-Hydroperoxide (HOOCH Moshammer K; Jasper AW; Popolan-Vaida DM; Wang Z; Bhavani Shankar VS; Ruwe L; Taatjes CA; Dagaut P; Hansen N J Phys Chem A; 2016 Oct; 120(40):7890-7901. PubMed ID: 27641828 [TBL] [Abstract][Full Text] [Related]
10. Molecular-Weight Growth in Ozone-Initiated Low-Temperature Oxidation of Methyl Crotonate. He X; Hansen N; Moshammer K J Phys Chem A; 2020 Oct; 124(39):7881-7892. PubMed ID: 32893634 [TBL] [Abstract][Full Text] [Related]
11. Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene. Womack CC; Martin-Drumel MA; Brown GG; Field RW; McCarthy MC Sci Adv; 2015 Mar; 1(2):e1400105. PubMed ID: 26601145 [TBL] [Abstract][Full Text] [Related]
12. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide. Asatryan R; Bozzelli JW Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182 [TBL] [Abstract][Full Text] [Related]
13. Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation. Percival CJ; Welz O; Eskola AJ; Savee JD; Osborn DL; Topping DO; Lowe D; Utembe SR; Bacak A; McFiggans G; Cooke MC; Xiao P; Archibald AT; Jenkin ME; Derwent RG; Riipinen I; Mok DW; Lee EP; Dyke JM; Taatjes CA; Shallcross DE Faraday Discuss; 2013; 165():45-73. PubMed ID: 24600996 [TBL] [Abstract][Full Text] [Related]
14. Formic acid catalyzed isomerization and adduct formation of an isoprene-derived Criegee intermediate: experiment and theory. Vansco MF; Caravan RL; Pandit S; Zuraski K; Winiberg FAF; Au K; Bhagde T; Trongsiriwat N; Walsh PJ; Osborn DL; Percival CJ; Klippenstein SJ; Taatjes CA; Lester MI Phys Chem Chem Phys; 2020 Dec; 22(46):26796-26805. PubMed ID: 33211784 [TBL] [Abstract][Full Text] [Related]
15. Temperature-dependent kinetics of the atmospheric reaction between CH Wang PB; Truhlar DG; Xia Y; Long B Phys Chem Chem Phys; 2022 Jun; 24(21):13066-13073. PubMed ID: 35583864 [TBL] [Abstract][Full Text] [Related]
16. Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate. Caravan RL; Vansco MF; Au K; Khan MAH; Li YL; Winiberg FAF; Zuraski K; Lin YH; Chao W; Trongsiriwat N; Walsh PJ; Osborn DL; Percival CJ; Lin JJ; Shallcross DE; Sheps L; Klippenstein SJ; Taatjes CA; Lester MI Proc Natl Acad Sci U S A; 2020 May; 117(18):9733-9740. PubMed ID: 32321826 [TBL] [Abstract][Full Text] [Related]
17. Structure-dependent reactivity of Criegee intermediates studied with spectroscopic methods. Jr-Min Lin J; Chao W Chem Soc Rev; 2017 Dec; 46(24):7483-7497. PubMed ID: 28840926 [TBL] [Abstract][Full Text] [Related]
18. A theoretical study of the addition of CH Chow R; Mok DKW Phys Chem Chem Phys; 2020 Jul; 22(25):14130-14141. PubMed ID: 32542295 [TBL] [Abstract][Full Text] [Related]