These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30896920)

  • 1. Lattice-Resonance Metalenses for Fully Reconfigurable Imaging.
    Hu J; Wang D; Bhowmik D; Liu T; Deng S; Knudson MP; Ao X; Odom TW
    ACS Nano; 2019 Apr; 13(4):4613-4620. PubMed ID: 30896920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrathin van der Waals Metalenses.
    Liu CH; Zheng J; Colburn S; Fryett TK; Chen Y; Xu X; Majumdar A
    Nano Lett; 2018 Nov; 18(11):6961-6966. PubMed ID: 30296107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain-Multiplex Metalens Array for Tunable Focusing and Imaging.
    Ahmed R; Butt H
    Adv Sci (Weinh); 2021 Feb; 8(4):2003394. PubMed ID: 33643805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Lattice Lenses for Multiwavelength Achromatic Focusing.
    Hu J; Liu CH; Ren X; Lauhon LJ; Odom TW
    ACS Nano; 2016 Nov; 10(11):10275-10282. PubMed ID: 27786448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally reconfigurable metalens.
    Archetti A; Lin RJ; Restori N; Kiani F; Tsoulos TV; Tagliabue G
    Nanophotonics; 2022 Sep; 11(17):3969-3980. PubMed ID: 36059378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric Metalens: Properties and Three-Dimensional Imaging Applications.
    Kim SJ; Kim C; Kim Y; Jeong J; Choi S; Han W; Kim J; Lee B
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Varifocal Metalens Using Tunable and Ultralow-loss Dielectrics.
    Wang M; Lee JS; Aggarwal S; Farmakidis N; He Y; Cheng T; Bhaskaran H
    Adv Sci (Weinh); 2023 Feb; 10(6):e2204899. PubMed ID: 36596668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable metalensing based on plasmonic resonators embedded on thermosresponsive hydrogel.
    Ullah N; Khalid AUR; Ahmed S; Iqbal S; Khan MI; Rehman MU; Mehmood A; Hu B; Tian X
    Opt Express; 2023 Apr; 31(8):12789-12801. PubMed ID: 37157432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanically tunable focusing metamirror in the visible.
    Cheng F; Qiu L; Nikolov D; Bauer A; Rolland JP; Vamivakas AN
    Opt Express; 2019 May; 27(11):15194-15204. PubMed ID: 31163719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A broadband achromatic metalens for focusing and imaging in the visible.
    Chen WT; Zhu AY; Sanjeev V; Khorasaninejad M; Shi Z; Lee E; Capasso F
    Nat Nanotechnol; 2018 Mar; 13(3):220-226. PubMed ID: 29292382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subwavelength lattice optics by evolutionary design.
    Huntington MD; Lauhon LJ; Odom TW
    Nano Lett; 2014 Dec; 14(12):7195-200. PubMed ID: 25380062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-Glass, Large Metalens at Visible Wavelength Using Deep-Ultraviolet Projection Lithography.
    Park JS; Zhang S; She A; Chen WT; Lin P; Yousef KMA; Cheng JX; Capasso F
    Nano Lett; 2019 Dec; 19(12):8673-8682. PubMed ID: 31726010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband achromatic dielectric metalenses.
    Shrestha S; Overvig AC; Lu M; Stein A; Yu N
    Light Sci Appl; 2018; 7():85. PubMed ID: 30416721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging.
    Khorasaninejad M; Chen WT; Devlin RC; Oh J; Zhu AY; Capasso F
    Science; 2016 Jun; 352(6290):1190-4. PubMed ID: 27257251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization Insensitive, Broadband, Near Diffraction-Limited Metalens in Ultraviolet Region.
    Kanwal S; Wen J; Yu B; Chen X; Kumar D; Kang Y; Bai C; Ubaid S; Zhang D
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32718074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-Plane Surface Lattice and Higher Order Resonances in Self-Assembled Plasmonic Monolayers: From Substrate-Supported to Free-Standing Thin Films.
    Volk K; Fitzgerald JPS; Karg M
    ACS Appl Mater Interfaces; 2019 May; 11(17):16096-16106. PubMed ID: 30945839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic.
    Zhou C; Duan X; Liu N
    Acc Chem Res; 2017 Dec; 50(12):2906-2914. PubMed ID: 28953361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metalenses Based on Symmetric Slab Waveguide and c-TiO₂: Efficient Polarization-Insensitive Focusing at Visible Wavelengths.
    Liang Y; Wei Z; Guo J; Wang F; Meng H; Liu H
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30205478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Chiral Optics in All-Solid-Phase Reconfigurable Dielectric Nanostructures.
    Li J; Wang M; Wu Z; Li H; Hu G; Jiang T; Guo J; Liu Y; Yao K; Chen Z; Fang J; Fan D; Korgel BA; Alù A; Zheng Y
    Nano Lett; 2021 Jan; 21(2):973-979. PubMed ID: 33372805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.